

MIKROTIK USER MEETING 2015

Cómo Configurar MikroTik Wireless para trabajar eficientemente en Ambientes de Ruido

EDWARD OVIDIO GARCIA
IP CANALES S.A.S

Bogotá, Colombia Agosto 11 de 2015

MikroTik PRESENTACIÓN PERSONAL

Edward Ovidio García

MIKROTIK CERTIFIED CONSULTANT

✓ MTCNA : Network Associated

✓ **MTCRE** : Enrutamiento Avanzado

✓ **MTCTCE** : Control de Trafico

✓ MTCWE : Redes Inalambricas

✓ dCAAA : Digium Certified Asterisk Administrator

Experiencia en Redes

- ✓ Radios de dos vías, Radioteléfonos, Repetidoras (1.990)
- ✓ Sistemas Troncalizados. Smart trunk II, LTR (1993)
- ✓ Sistemas de Paging. Beeper Alfanuméricos, Simulcast (1994)
- ✓ Sistemas de Radios digitales NEXEDGE NXDN Kenwood (2006)
- ✓ Redes Inalámbricas, Internetworking y Voip (2005)
- ✓ Mikrotik (2010)

PRESENTACIÓN DE LA EMPRESA

- ✓ Desarrollo de Proyectos
- ✓ Redes Inalámbricas
- ✓ Telefonía VolP
- ✓ Soporte
- ✓ Video Vigilancia Seguridad Ciudadana
- ✓ Venta de Hardware y Licencias Mikrotik

info@ipcanales.com

Cali, Colombia

OBJETIVOS

A través de una charla sencilla y clara, compartir experiencias y conocimiento sobre la configuración de enlaces inalámbricos Mikrotik para trabajar eficientemente en ambientes de ruido.

Al terminar la exposición espero que la información presentada sea de gran utilidad y nos brinde múltiples beneficios.

TEMAS DE LA PRESENTACIÓN

- 1. SITE SURVEY
- 2. ANALISIS DEL ESPECTRO
- 3. CONFIGURACIÓN DE EQUIPOS
- 4. POLARIZACION SLAN + /- 45

Duración 30 minutos

Radio Mobile:

Software que permite simular el desempeño de cobertura de Radio sobre un terreno Real y con un equipo Real

El programa puede analizar enlaces punto a punto, exportar las imágenes, mapas y los trayectos de radio con sus zonas de Fresnel a Google Earth para su visualización

Útil para la planificación de enlaces PtPt de Radio desde La Radio Base hacia una estación y Viceversa.

Sitio de descarga:

http://www.cplus.org/rmw/english1.html

Radio Mobile Utiliza mapas reales.

Los datos de elevación servidores de la NASA SRTM Shuttle Terrain Radar Mapping Misión

Los datos de altitud tienen una precisión de 3 segundos de arco (100m).

Simulación de equipos Reales como Mikrotik RB912 5HPnD

Toma de Coordenadas con GPS

SITE 1 RADIOBASE CALI

SITE 2 ESTACION BUGA

ANALISIS DEL ESPECTRO CON DUDE DE MIKROTIK

MikroTik ANALISIS DEL ESPECTRO CON DUDE DE MIKROTIK

ANALISIS DEL ESPECTRO CON DUDE DE MIKROTIK

SPECTRAL SCAN

En el dispositivo que usaremos para realizar el análisis de espectro.

Seleccionamos la pestaña Tools

Se Despliega el menú de herramientas del cual seleccionamos SPECTRAL SCAN para iniciar la configuración de la herramienta.

MANALISIS DEL ESPECTRO CON DUDE DE MIKROTIK

DUDE analizador de espectro, vista Waterfall o cascada

ANACISIS DEL ESPECTRO CON DUDE DE MIKROTIK

DUDE analizador de espectro, vista Density

ANALISIS DEL ESPECTRO CON DUDE DE MIKROTIK

DUDE analizador de espectro, vista Graph

ANALISIS DEL ESPECTRO CON DUDE DE MIKROTIK

Luego del análisis del espectro, podemos decidir cuál es el canal que utilizaremos y el espacio dentro del espectro radio eléctrico

CONFIGURACION

RADIO ENLACE MIKROTIK ROUTER OS

HT MCS

- ✓ Modulación y esquema de codificación (MCS)
- ✓ Dependiendo de los resultados de la señal, elegimos la mejor opción para nosotros usando la tabla proporcionada en las siguientes diapositivas
- ✓ La MCS real dependerá del nivel de señal, la interferencia local
- ✓ Si una conexión inalámbrica no se puede mantener, el valor MCS se puede bajar lo que reducirá la tasa de error.

NIVELES MINIMOS DE SEÑAL

	Streams	MCS	Data Rate	Req. SNR	Mínima Señal
IxI	1	0	15 Mbps	9.3 dB	-88 dBm
	1	1	30 Mbps	11.3 dB	-82 dBm
	1	2	45 Mbps	13.3 dB	-79 dBm
	1	3	60 Mbps	17.3 dB	-76 dBm
	1	4	90 Mbps	21.3 dB	-73 dBm
	1	5	120 Mbps	24.3 dB	-68 dBm
	- 1	6	135 Mbps	26.3 dB	-65 dBm
(1	7	150 Mbps	27.3 dB	-63 dBm
	2	8	30 Mbps	12.3 dB	-85 dBm
	2	9	60 Mbps	14.3 dB	-79 dBm
	2	10	90 Mbps	16.3 dB	-76 dBm
2x2	2	11	120 Mbps	20.3 dB	-73 dBm
2/2	2	12	180 Mbps	24.3 dB	-70 dBm
	2	13	240 Mbps	27.3 dB	-65 dBm
	2	14	270 Mbps	29.3 dB	-62 dBm
	2	15	300 Mbps	30.3 dB	-60 dBm

Valores tomados Hannes Willemse MUM - South Africa - July 2013. Tabla presentation Mario Clep MUM USA 2015

DATA RATES vs. ANCHO DE DE CANAL

Streams	MCS	DR / 2x20MHz	DR / 20MHz	DR / IOMHz	DR / 5MHz
1	0	15 Mbps	6,5 Mbps	3,3 Mbps	1,6 Mbps
1	I	30 Mbps	13 Mbps	6,5 Mbps	3,3 Mbps
1	2	45 Mbps	19,5 Mbps	9,8 Mbps	4,9 Mbps
1	3	60 Mbps	26 Mbps	13 Mbps	6,5 Mbps
1	4	90 Mbps	39 Mbps	19,5 Mbps	9,8 Mbps
1	5	120 Mbps	52 Mbps	26 Mbps	13 Mbps
1	6	135 Mbps	58,5 Mbps	29,3 Mbps	14,6 Mbps
1	7	150 Mbps	65 Mbps	32,5 Mbps	16,3 Mbps
2	8	30 Mbps	13 Mbps	6,5 Mbps	3,3 Mbps
2	9	60 Mbps	26 Mbps	13 Mbps	6,5 Mbps
2	10	90 Mbps	39 Mbps	19,5 Mbps	9,8 Mbps
2	11	120 Mbps	52 Mbps	26 Mbps	13 Mbps
2	12	180 Mbps	78 Mbps	39 Mbps	19,5 Mbps
2	13	240 Mbps	104 Mbps	52 Mbps	26 Mbps
2	14	270 Mbps	117 Mbps	58,5 Mbps	29,3 Mbps
2	15	300 Mbps	130 Mbps	65 Mbps	32,5 Mbps

UTILIZAR 802.11N

Utilizar **5GHz only N**

- ✓ Este estándar mejora la capacidad de los canales
- ✓ Incorpora un ancho de banda de los canales de 40MHz,
- ✓ Mayor Velocidad que 802.11 A (54 Mbps)
- ✓ Data Rates de hasta 150Mbps / 300Mbps
- ✓ Tecnología MIMO
- Recomendación: usarlo aunque disponga de una antena de una sola polaridad

Utilizar NV2 Siempre que se pueda

- ✓ NV2 Es un Protocolo Propietario de Mikrotik
- ✓ Mucho más eficiente que las versiones anteriores de CSMA (Carrier Sense Multiple Access)
- ✓ NV2 utiliza TDMA (Time Division Multiple Access)
- ✓ NV2 tiene características especiales que ayudan en la reducción de ruido recibido.

CAMBIAR POLARIDAD H Y V POR X

- ✓ La Polarización: dirección en que se propagan las ondas electromagnéticas.
- ✓ Debe ser la misma en los dos extremos del enlace
- ✓ Cuando es diferente implica perdida de señal hasta de 20 Db

MikroTik CAMBIAR POLARIDAD H Y V POR SLANT + /- 45° X

- ✓ El objetivo es modificar la polarización de las antenas en ambos lados del enlace
- ✓ Separar los flujos de datos y obtener mayor rendimiento logrando señales mas limpias.
- Es necesario modificar la base de la antena perforando nuevos agujeros para que coincidan con los tornillos

MikroTik Polarity slant + /- 45°

Para Obtener Polaridad X basta con girar +/- 45 grados el Feed Horn

Polarity slant + /- 45°

Con la Rotación de la antena obtenemos nuevas polarizaciones, diferentes de H y V. Esto permite la crear enlaces mas eficientes en ambientes ruidosos que están interferidos por las redes de vecinos que trabajan en H y V.

Polarity slant + /- 45°

PLARIZACION HV RB912

Interface <wlan1> Traffic NV2 Tx Power Current Tx Power Status OK Tx/Rx Rate: 59.8 Mbps / 62.0 kbps Cancel Tx/Rx Packet Rate: 4 997 p/s / 87 p/s Apply Tx/Rx Bytes: 190.2 GiB / 32.9 GiB Disable Tx/Rx Packets: 202 083 524 / 162 347 477 Comment / 0 Tx/Rx Drops: 0 Torch / 0 Tx/Rx Errors: 0 Scan... Freq. Usage... Align... Sniff... Snooper... Reset Configuration Simple Mode Tx: 59.8 Mbps Rx: 62.0 kbps

POLARIZACION X RB912

TX RATE 59.8 MHZ.

TX RATE 106.6 MHZ.

SITIOS DE INTERES

- ✓ http://wiki.mikrotik.com/wiki/Manual:TOC
 Completa información acerca de las configuraciones de MikroTik RouterOS documentación detallada de Wireless y DUDE
- ✓ http://forum.mikrotik.com

 Sitio de encuentro para compartir conocimiento y experiencias con otros usuarios de MikroTik muchos manuales y configuraciones.
- <u>http://www.tiktube.com/</u>
 Sitio para ver y descargar videos de experiencias MikroTik, videos de los MUM, archivos de presentaciones en PDF
- ✓ http://www.cplus.org/rmw/english1.html
 Pagina Oficial de Radio mobile, software, Manuales de configuración

MIKROTIK USER MEETING 2015 PREGUNTAS?

Muchas Gracias!!

Edward Ovidio García

www.ipcanales.com

Email: info@ipcanales.com

Personal: edwardovidio@gmail.com

Móvil: 319 258 1009