

Conserving IPv4 Addresses in a Routed Network

MikroTik MUM – Slovenia 2016 Brian Horn – WISP TRACON LLC

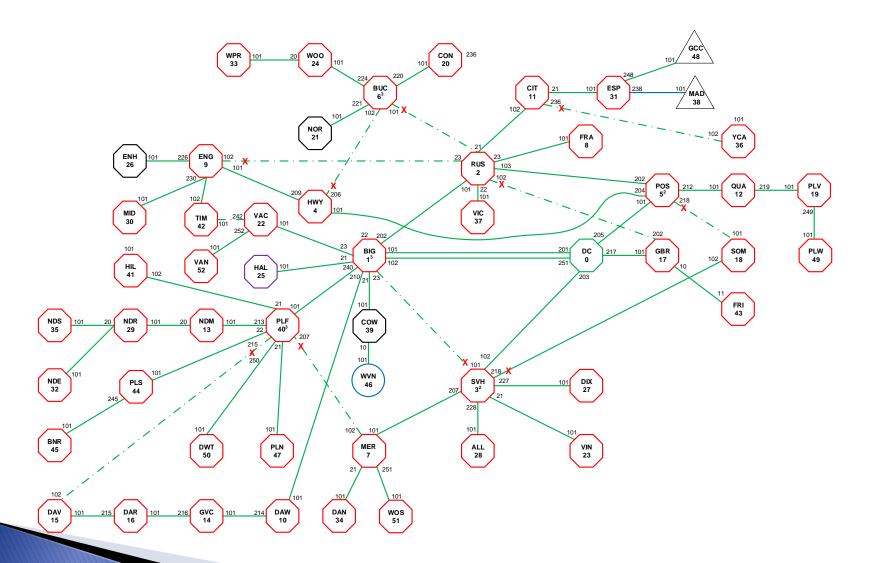
Background

- WISP TRACON LLC
 - Solutions Training and Consulting Company
 - Operations in North America, Europe and Africa
 - MikroTik Certified Consultants and Trainers
- Winters Broadband LLC
 - California based WISP
 - Founded 2002
 - ARIN assigned ASN and /22 address block
 - CPE assigned static public IP address
 - Addresses DMCA issues
 - Digital Millennium Copyright Act

Winters Broadband Network - 2012

Existing

- Edge Routed
 - Bridged/Switched backbone with routed subscriber connections
- Script controlled redundant links
- 40+ Access Point sites
- Over 600 CPE's
- Dual homed Internet connection


Plan

- Migrate to routed OSPF backbone
- Subnetted by Site location

Issues

- Unable to get additional IPv4 address assignment
- Subnetting issues Poor address utilization

Network Architecture – 2012

Subnetting /22

IP Address Block/Site

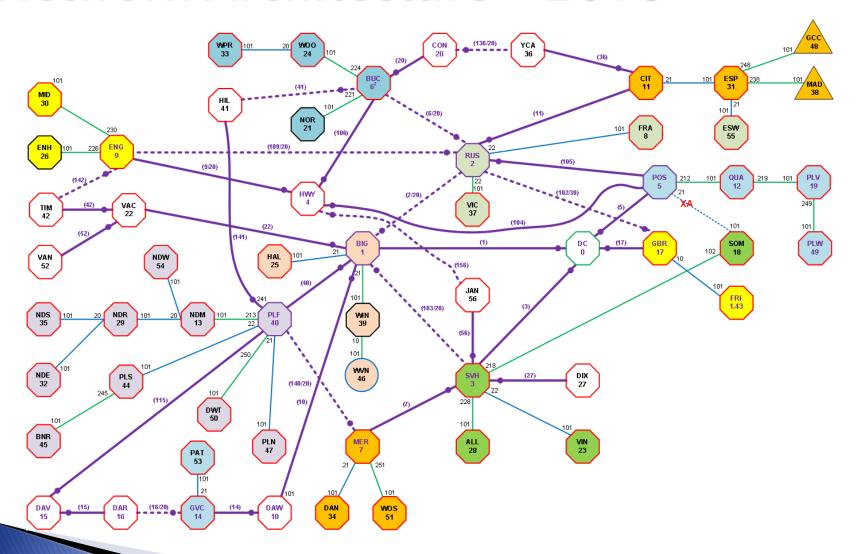
IP Address block/site				
4	5	6	7	
DC	SVH	RUS	MER	
GBR		BUC	NDM	
BIG	SOM VIN	CON	NDX	
GBR	ALL	woo	DAN	
		woo	FRA	
HWY	DIX	500	5.4147	
HAL		POS	DAW	
VAC	NOR	PLF	GVC	
	HIL		ESP	
ENG	CIT	QUA	DAR	
	ESP	PLV	DAV	

/28 16 Subnets 14 Hosts/Subnet				
Network#	IP Range	Broadcast		
0	1~14	15		
16	17~30	31		
32	33 ~ 46	47		
48	49 ~ 62	63		
64	65 ~ 78	79		
80	81~94	95		
96	97 ~ 110	111		
112	113~126	127		
128	129~142	143		
144	145 ~ 158	159		
160	161~174	175		
176	177 ~ 190	191		
192	193 ~ 206	207		
208	209~222	223		
224	225 ~ 238	239		
240	241~254	255		

/26 4 Subnets 62 Hosts/Subnet				
Network#	IP Range	Broadcast		
0	1~62	63		
64	65~126	127		
128	129~190	191		
192	193 ~ 254	255		

/27 8 Subnets 30 Hosts/Subnet				
Network#	IP Range	Broadcast		
0	1~30	31		
32	33 ~ 62	63		
64	65~94	95		
96	97~126	127		
128	129~158	159		
160	161~190	191		
192	193 ~ 222	223		
224	225 ~ 254	255		

Subnetting Disadvantages


- Loss of IP addresses
 - Network, Gateway and Broadcast addresses
- Limit on addresses in subnet
 - What happens when Site address allocation is exhausted?
- Switching CPE to different AP is complex
 - Requires new IP address assignment

Winters Broadband Network - 2016

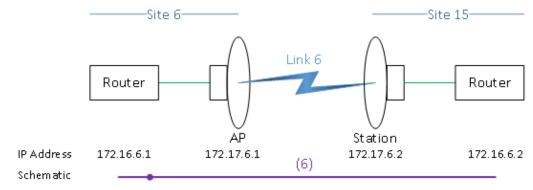
- Fully Routed with OSPF
 - Dual homed 10 GHz and 1 GHz
- 56 Access Point sites
- All CPE's have /32 IP address
- No configuration issues
- Roaming supported for survey trucks

Network Architecture – 2016

Documenting your Network

- Document
 - Do you have a documentation standard?
 - Now would be a good time to implement one
 - Schematics (Visio)
 - IP address assignment
 - Site designations
 - Network schematic
 - What you have now
 - What you want to achieve

Documentation Standards


- Site/Link Naming Conventions
 - Keep it simple
 - Use 3 character abbreviations for sites
 - e.g. MER, PLF, SVH
 - Assign a unique number to each site
 - e.g. MER = site 7, SVH = site 3
 - Link names based on sites being connected
 - e.g. Link SVHMER or Link MERSVH

Documentation Standards

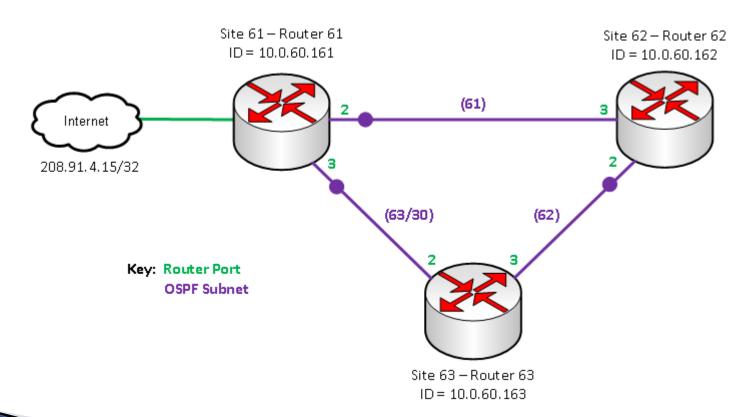
- IP Addresses Management Network
 - Choose a IP block for network management
 - e.g. 10.0.0.0/16
 - Assign IP addresses as 10.0.X.Y where:
 - X = Site number, 60 reserved for loopback addresses
 - Y = 1 for Site Router (increment if more than one router)
 - 10 for 2.4 GHz AP with omni-directional antenna
 - 11, 12, .. for 2.4 GHz AP's with sector antennas
 - 20 for 5 GHz AP with omni-directional antenna
 - 21, 22, .. For 5 GHz AP's with sector antennas
 - 3x ... For 3.65 GHz AP's
 - 40 Power controller
 - 9x ... For 900 MHz AP's

Documentation Standards

- IP Addresses OSPF Links
 - Choose an IP subnet to be used e.g. 172.16.X.Y/30
 - Where X = Link # and Y = Device #
 - Use lowest site # for link #, if already used +100 to link #

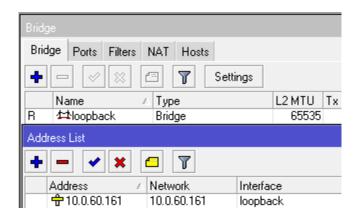
- (6) indicates link 6 with default OSPF cost of 10
- (6/20) indicates link 6 with OSPF cost of 20
- IP Addresses P2P Wireless Links
 - Choose an IP subnet to be used e.g. 172.17.X.Y/30
 - Where X = Link # and Y = Device #
 - Use lowest site # for link #, if already used +100 to link #

Subscriber IP Addresses


- Subscriber are assigned a /32 public IP address
 - e.g. 216.206.4.5/32
- /32 Address allows 100% address utilization
 - Avoid sub-netting and out of address space issues

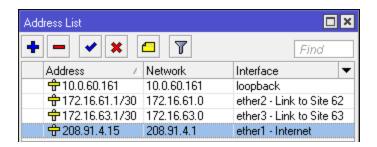
OSPF Configuration Basics

- Ensure that all routers are:
 - Running the same version of RouterOS
 - Have been upgraded to the current firmware
 - Have their time zone and SNTP client configured
 - Check the Log for the correct time
 - A small router can be configured to be a NTP server
 - Set the router identity
 - Change the Ethernet port name to indicate its use
 - e.g. Change "ether2" to "ether2 Link to Site 62"


Configuring an OSPF Network

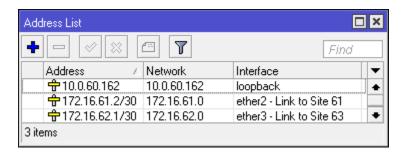
The following configuration steps illustrate the application in a three node network

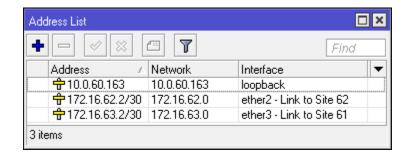
OSPF Configuration – loopback


- Router 61
 - Create "loopback" bridge
 - Add router ID as loopback address

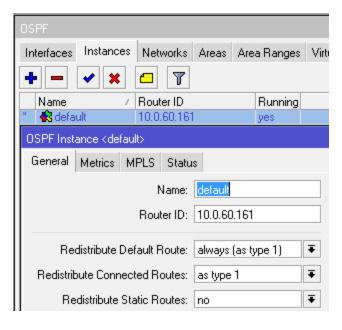
Repeat configuration for site 62 and 63 routers

OSPF Configuration - IP Addresses

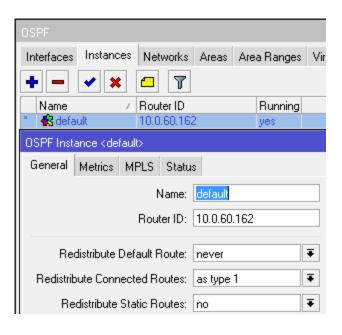

Router 61 – Internet connection site

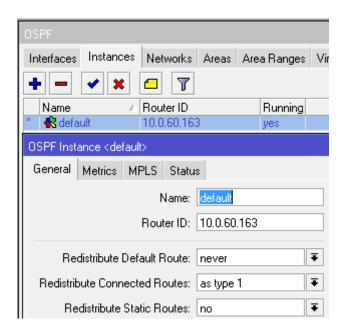


- Loopback address
- OSPF link addresses
- Network Gateway address
 - /32 Gateway for subscriber assigned addresses
- IP Address of your upstream provider
 - Public IP address gateway for ARIN assigned addresses

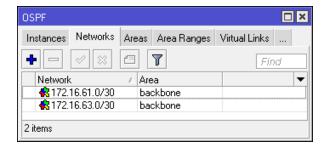

OSPF Configuration - IP Addresses

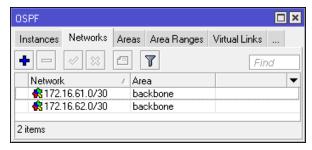
Router 62

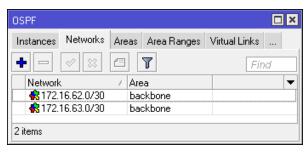



OSPF Configuration – Instances

OSPF Configuration - Instances

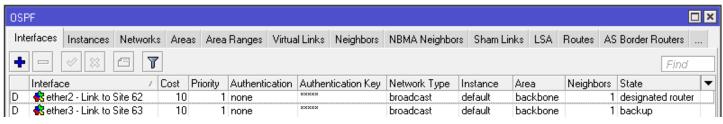

Router 62



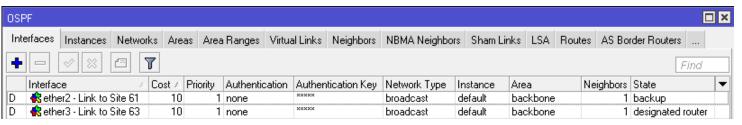

OSPF Configuration – Networks

Router 61

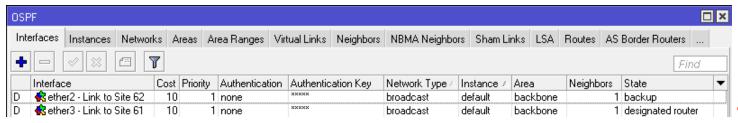
Router 62



Basic OSPF Configuration Complete

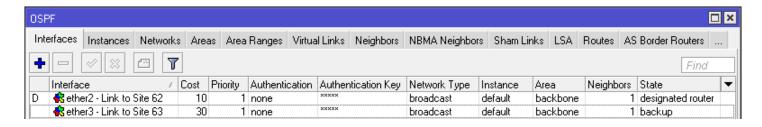

- At this stage you should have an operational three router OSPF network
- The status can be checked with:
 - OSPF Interfaces
 - OSPF Neighbors
 - OSPF Routes
 - OSPF LSA

OSPF Interfaces


Router 61

Router 62

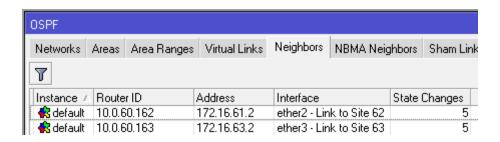
Router 63

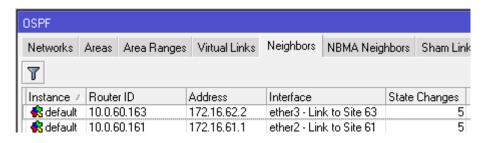


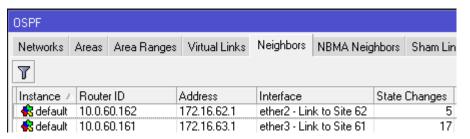
Cost != 30

Cost != 30

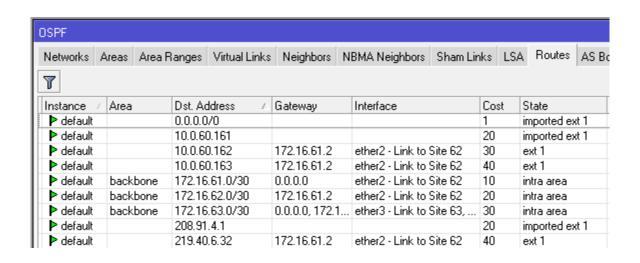
Changing Interface Cost


- Interfaces are dynamically created with a cost of 10
- To modify cost
 - Select Interface, Copy, change cost and Apply
 - Interface is replaced by statically configured one

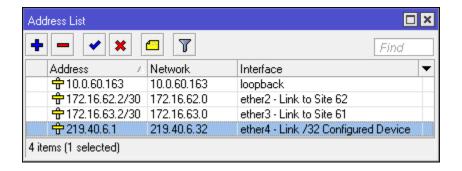

Change cost must be changed at both ends of link


OSPF Neighbors

Router 61

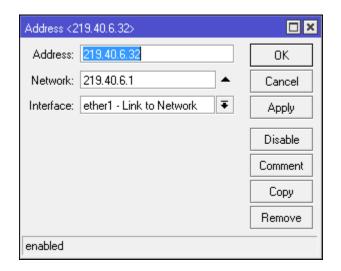


Router 62


OSPF Routes – Router 61

- Route Lists shows:
 - Internet connection
 - Loopback addresses
 - OSPF networks
 - /32 connected device 219.40.6.32

Implementing /32 Routing


Router 63 to which subscriber is connected

- Address = Gateway Address
- Network = /32 Address assigned to subscriber
 Note: Configure port to support proxy ARP

Subscriber /32 Address Configuration

MikroTik

Non MikroTik

OSPF - Next Steps

- Firewall
 - OSPF uses protocol 89
- OSPF Network Type
 - broadcast, nbma, p2p or ptmp
- BFD (Bidirectional Forwarding Detection)
 - Faster link failure detection
 - Reduce recover from 10s to 8s
- Security
 - Add authentication (MD5)

Implementation Guidelines

- Plan
 - Understand what you want to achieve
 - MikroTik MTCRE training
 - Consultant
- Document
 - Essential before configuration
- Prototype
 - Validate your plan
- Phased Approach
 - One bite at a time

WISP TRACON

The Solutions Training and Consulting Company