Barttomiej Kos
MUM Slovenia

25-26 Feb 2016

Barttomiej Kos
bkos@fast-stable-secure.net

e A network engineer
e 9years in the business
e A MikroTik fan (MTCRE, MTCWE)

mailto:bkos@fast-stable-secure.net
mailto:bkos@fast-stable-secure.net

Traditional approach to network monitoring

Traditional approach to network monitoring

Many systems hitting network devices over and over again to get the
same data, but to display different results (graphing, threshold
monitoring, reachability)

All the workload inherent to monitoring heaped upon one monitoring

system (scalability issues)
The need for full network reachability between network devices and the

monitoring system

The need to accommodate oneself to a monitoring system’s limited
flexibility in order to monitor one’s network

e The ability to handle as many different check types as possible
(graphing, threshold monitoring, reachability monitoring, etc.)

e Flexibility that allows speedy addition of new monitoring types, both
standard (SNMP) and esoteric (CLI)

e Good scalability (up and out)
e Extreme simplicity for allowing one to quickly learn how to get the most

of the system without the need to learn some complicated coding
techniques (educational as well as operational benefits)

Going Aggregated some two years ago: the hase

Graphing

Threshold monitoring

Alerting

Performance

Manageability and extensibility

The choice:

Naglos + PNP/?Naglos

And so, the Aggmon was born...

Graphing: pnp4nagios
Threshold monitoring: Nagios Core
Alerting: Nagios Core
Extensibility:
o check_snmp as the base for most of the sensors

o custom Bash scripts for handling more esoteric checks
o even more custom Bash scripts for extracting and processing console retrieved data

o Grand Unified Gatherer Bash script as the means of discovering and identifying
devices, and adding and updating their respective sensor configurations

e Performance: good at first, but then, well...

Going Aggregated some half a year ago: the performance

Active Host / Service Checks: 1067 / 20087

CPU Load for aggmon2 f Current_Load

2okt
1.5k ; B

-

B 10k - B

a | 1
0.5 k i_ " -\l & 5 | \h
0.0 = G VUWE W — . . by

Sat 00: 00 Sat 12: 00

Bl load 15 8.02 Last 188.74 Average 1670.956 Max

O Load 5 3.54 Last 148,32 Average 164352 Max

O load 1 5.0

2 Last 58.60 Average 1878.60 Max

bkos: Hey, I’'m developing this really great monitoring system thing; can |
snmpwalk and snmpget some of your boxes?

psi: No, you can’t. But you can use a statistics broker that’s available with
my boxes’ central management system.

bkos: A statistics broker?

Going Distributed: situational analysis

What a monitoring system usually does?

Devices discovery and identification
Sensors setup

Data retrieval

Data processing

Data presentation

Historical data storing

A lot of Compute + A lot of Storage

Aggmon Distmon

Data
transfer

¢ |

A lot of Storage A lot of Compute

Codingware required

A Linux (a BSD can do but needs extra care as far as compatibility goes)
The GNU Bourne Again SHell (Bash)

grep, sed, and some other standard GNU utilities

ping and net-snmp

OpenSSH (ssh, scp)

GNU bc (for big numbers and floating point calculations)

e Github

e Devices discovery and identification
o distmon_runner.sh

e Data retrieval
o distmon_rover.sh

e Data processing
o distmon_regulator.sh
o distmon_presenter.sh

e Sensors setup
o aggmon_gatherer.sh

e Data presentation and historical data storing
o Nagios Core + pnp4nagios

functions reusable
between scripts
(global)

[

a script

+ pre-run

+ script-specific functions
+ loops (main body)

+ post run

work
results

o~

variables reusable
between scripts
(global)

a script

+ pre-run

+ script-specific functions
+ loops (main body)

+ post run

subscript 1 subscript n

work
results

o

work

subscript 1

subscript n

results

1. ICMP reachability test

4. SCP the results
2. SNMP Community discovery test over to Aggmon

3. SSH key based authentication test

e Simple checks
o Is the host reachable?
o Does the host respond to a known SNMP Community string?
o Ifit does, get its SNMP sysDescr.0
o Also try to find if the device accepts key-based passwordless login

o Hosts without a matching SNMP Community or unreachable will not get processed by

the other scripts until Runner properly discovers them

e The gathered data stays with the Distmon server, a copy is sent over to
Aggmon server(s) via SCP

2. snmpbulkwalk device with
standard and device-type type
specific MIB branches to
gather raw SNMP data

C
=

1. Source Runner’s
properly discovered
hosts’ list

e Purpose driven
o See if the host is up. If it is not, leave it alone until a next scheduled Rover session
o snmpbulkwalk a host with some generic SNMP MIB branches (IF-MIB::ifTable, etc.)

o snmpbulkwalk the host with device-specific SNMP MIB branches, depending on device
type (MIKROTIK-MIB::mtxrQueues, etc.)
o Data is saved as retrieved, a timestamp is added for further data processing

e Easy to adapt for data retrieval from new device types (it is just a simple

Bash script, after all)

o if DeviceType1 then GenericMIB + MIB1::branch1 + MIB2::branch2
if DeviceType2 then DenericMIB + MIB1::branch10 + MIB10::branch1

/1. Selectively concatenate Rover’s retrieved raw SNMP data \

2. Convert raw data to outright Bash variables; leave out anything unwieldy -
just focus on the necessary data

3. Designed with the preference of Bash “parameter expansion” magic over
grepping and sedding to save speed and processing power /

e The fastest script of the Framework

o To do its work, it only needs the raw data files gathered by Rover. It does not interact
with network devices in any way

o Regulator makes sure to, in the end, generate files that contain only Bash variables that

are ready for sourcing by the next script

e Unless there is a specific need for doing otherwise (and there has not
been so far), Regulator takes care of only the data that is easily
convertible

1. Source Regulator-
generated, Bash variables-
filled flat files

3. SCP calculated and
distributed results
over to Aggmon

2. Spawn subscripts for
calculating and distributing
logically grouped data types
across their respective
designated data files

N

e Responsible for preparing data for direct use by sensors without them
having any further need to do any intensive processing of any kind

e Assisted by GNU bc anytime big number (64 bit) or floating point
calculations need to be done

e Relatively the most complicated of all, but easily expandable, owing to
subscript-based design (new functionality = new subscript)

e Sends all its calculated data to Aggmon server(s) via SCP

Interface Ethernet1/V27 Errors
Interface Ethernet1/0/27 Load
Interface Ethernet 1/0/27 Status

Interface Ethernet1/V27 Traffic

Interface Ethernet1/0i27 Traffic Disposition

Wireless AP Client 00:15:60:B6:B6:42 Performance
Wireless AP Client 00:15:60:B0:50:04 Performance
Wireless AP Client 00:15:60:C2:B3:78 Performance
Wireless AP Client 00:15:60:C6:51:FB Performance
Wireless AP Client 00:15:6D:C9:A3:82 Performance

Wireless AP Client 00:15:60:02:03:32 Performance

E =

Errors per Second . E_EPIX1 :; Input Errors; 0 . Qutput Errors: O
Interface Load ;- E_EPLX1 :: Input Load: 13% . Output Load: 1%

Traffic Statistics .- E_EPIX1

[ox

|.t']< :

| Ok Interface State :: E_EPIX1 :: Administrative: UP . Operating: UP
[ox

Traffic Disposition :: E_EPLX1

Wireless Access Point Client Statistics

Wireless Access Point Client Statisties ::
‘Wireless Access Point Client Statistics ::
Wireless Access Point Clisnt Statistics -
Wireless Access Point Client Statistics @

Hixst | aternoy (0 Awersagse: D802 rres .

. Registered to: mt1-war1,

Wireless Access Point Client Statistics ;. Registered to: mt1-war31.

Registered to: mt1-ward1

Registered to; mt1-war1.
. Registered to: WARNING; Data Source Outdated . Uptime: 777
. Registered to: mt1-ward1.

41001 . Uptime: 5d00:19:33
41001 . Uptime: 4d08:35:08
141001 . Uptime: 6d07:10:13
41000 . Uptime: 1w5d09:03:17

41000 . Uptime: 06:17:58

Packet lo=s: O 9%

/1. Browse the data received from Distmon(s)

2. Generate sensor configurations for running with Nagios Core (threshold monitoring)

and pnp4nagios (graphing)

Going Distributed: use case No. 2

The Aggmon / Distmon performance

Distmon
+ script name='Distmon Rover'
+ _script run time=11
+ script name='Distmon Regulator'

+ _device count=20

+ script run time=3

+ script name='Distmon Presenter'
+ device count=20
+|_object_count=1107|

+ script run time=8

load average: 1.43, 0.91, 0.75

Load

Aggmon

Service Check Execution Time: 0,00/ 0,00 / 0,000 sec
Service Check Latency: 0,00/ 1,00/ 0,016 sec
Host Check Execution Time: 0,00/ 0,00 / 0,000 sec
Host Check Latency: 0,00/ 0,00 / 0,000 sec

Active Host /[Service Checks}: 25 /[3393 |

CPU Load for aggmon-test / Current_Load

1.0 SRR
I. h‘ = L ~m T n ; ke -
- 1 "!--1... = g

9.0

19: 20 15: 40 20: 00 20: 20 20: 48 21: 08 21: 28

M load 15 0.95 Last 0.74 Average 1.14 Max
H Load 5 1.09 Last 0.71 Average 1.30 Max
Oload 1 1.03 Last Q.74 Average 2.18 Max

ifDescr="Ethernetl/0/27"
ifAlias="E EPIX1"

SNMP interface data iﬁi;i?iziiiigieiif?i'
ifOperStatus="up"

A single object data file inBitsPerSecond="1351290279.20000000000000000000"
outBitsPerSecond="64916717.33333333333333333328"
provides a wealth of inUcastPktsPerSecond="6083.01666666666666666666"

. . outUcastPktsPerSecond="9619.016666666666666066666"
information that can be used inMcastPktsPerSecond="109693.81666666666666666666"

. outMcastPktsPerSecond=".48333333333333333333"
by a mUItItUde Of sensors inBcastPktsPerSecond="87.68333333333333333333"

outBcastPktsPerSecond=".05000000000000000000"

Traffic graphs (next slide) relativeInUcastPktsPerSecond="5.25011180443365534100"
relativeOutUcastPktsPerSecond="99.99445573510888399100"

|fUpDown alarm relativeInMcastPktsPerSecond="94.67421072686763029700"
relativeOutMcastPktsPerSecond=".00502449005757372500"

IfErrors alarm relativeInBcastPktsPerSecond=".07567746869871434600"

aps . relativeOutBcastPktsPerSecond=".00051977483354210900"
IfUtilisation alarm ——

STP transition alarm butErrorsPerSecond="0"

outIfLoad=".64916717333333333333"
And whatever else you can StpForwardingstatelransitionsbPerlnterval="0"|

think of tti h I resultsFreshnessCheckValue="1"
Ink of putting here!

U= LLI- 2p JOLrlerrace ENErneLl/uyes 1rarrlc 2T | Datacource: Multicast Traffic ol @ L
500 M : ! : ; ! - B : : -
RN S 1.dcnl-llrn—2p / Interface Ethernetl/0/25 Traffic 1_;
Cy E o] et M. F
o ozEe M g i 3
= -20 =
200 M n 2
e .z G|
109 M IR : . : : L : : : : : i -40 5
02:00 0220 08:40 09:00 0920 09:40 10:00 10:20 10:40 11:00 11:20 11:48 5@ i
B Outbound . _ _ _ 060 0820 0840 ©3.00 05,20 05,40 10,00 10,20 1040 11,00 11.20 11 40
Current: 280.32 Mbit/s Average: 256.03 Mbit/s Maximum: 395,44 Mbit/s B Outbound Multicast
B Inbound z : 5 4 Current : 51 packet/s Average: 52 packet/s Maximum: 57 packet/s
Current: 303.63 Mbit/s Average: 268.85 Mbit/s Maximum: 433 82 Mbit/s O Inbound Multicast
Current: 2 packetfs Average: 2 packetss Maximum: S packet/s
Datasource: Unicast Traffic ol A @ T
o Datasource: Broadcast Traffic o) v (9
denl-lim-2p / Interface Ethernetl/0/25 Traffic denl-lim-2p / Interface Ethernetl/0/25 Traffic g
| 20 ; : : g : g
5 10 2
W =1] =
a a =
Y o= e 2
g 38 g
-60 k- - - - - - : : : . s =30 : T T T i T ! y : 5 T e
R T T R D e e e e e 08:00 08:20 0840 G9:00 069:20 0940 10:00 10:20 10:40 11:00 11:20 11:40
: B Outbound Broadcast
O outbound Unicast . Current: 23 packet/s Average: 24 packet/s Maximum: 2B packet/s
Current: 49 kpacket/s Average: 41 kpacket/s Maximum: 60 kpacket/s B Inbound Broadcast
H Inbound Unicast Current; 7 packet/s Average: 9 packetfs Maximum: 17 packet/s
Current: 52 kpacket/s Average: 43 kpacket/s Maximum: 63 kpacket/s

CLI WiFi Registration Table client extracted and parsed

id="*1cc";interface="wlanl";radio name="AirGrid M5 HP";mac address="24:A4:
3C:42:96:EE";ap="false";wds="false";bridge="false";rx rate="36.0Mbps";
tx rate="54.0Mbps";packets="275407,209694" ;bytes="363721441,23250692";
frames="275407,209785"; frame bytes="364290329,22002264";hw_ frames="
336462,212411";hw frame bytes="456886638,30538226";tx frames timed out="0";
uptime="07:18:13"flast activity="00:00:02.460";signal strength="-52
dBm@6Mbps" {signal to noise="39"}signal_strength_ch0="—52";
strength at rates="-52dBm@6Mbps 30ms;-52dBm@12Mbps 8m20s130ms;-52dBm@18Mbps
3m33s910ms; -52dBm@24Mbps 3m32s800ms; -53dBm@36Mbps 2s5460ms; -52dBm@48Mbps
6s250ms"; tx signal strength="-48";|tx ccg="77"Jgx ccqg="99";|p throughput="
29860";distance="1";nstreme="false™; framing mode="none™; routeros version="
2.9.31";last 1p="192.168.192.195";1eee8021x port enabled="true";
authentication type="wpaZ2-psk";encryption="aes-ccm";group encryption="aes-
ccm";management protection="false";compression="false";wmm enabled="false";
registered to="mtl-war91:41001"

inBytesPerSecond="6"
outBytesPerSecond="0"

clientUptimeSeconds="26293"

wireless-stations / Wireless AP Client 24:A4:3C:42:8B:50 Performance
oM

bps

a3
1.0 H
3.0M
2.0 H
l1oH
e 14:40 15:00 15:20 15:40 16:00 16:20 16:48 17:00 17:20 17:40 18:00 18:20

@ Inbound

Current: 448 10 kbit/s Average: B840.45 kbit/s Maximum: 4850.84 kbit/s
M Outbound

Current: 95,21 kbit/s Average: 59,89 kbit/s Maximum: 198.35 kbit/s

P Throughput
19154 kbit/s

Datasource: outBytesPerSecond Q B i IR

S

wireless-stations / Wireless AP Client 24:A4:3C:42:8B:50 Performance

14:40 15:00 15:20 15:40 16:00 16:20 16:40 17:00 17:20 17:40 18:00 18:20
B Tx CCQ

Current: 76 % Average: 60 % Maximum: B8 %

W Rx CCQ

Current: 94 % Average: 92 % Maximum: 98 %

Datasource: clientUptimeSeconds t‘ Eaedic 1

wireless-stations / Wireless AP Client 24:A4:3C:42:8B:50 Performance

bps

14:40 15:00 15:20 15:40 16:00 16:20 16:40 17:00 17:20 17:40 18:00 18:20
M Rx Rate

Current: 28 Mbit/s Average: 30 Mbit/s Maximum: 48 Mbit/s
B Tx Rate

Current: 36 Mbit/s Average: 32 Mbit/s Maximum: 54 Mbit/s

CLI WiFi Registration Table client graphs

wireless-stations / Wireless AP Client 24:A4:3C:42:8B:50 Performance

-50.0
e -60.0
[is}
=

-70.0

14:40 15:00 15:20 15:40 16:00 16:20 1640 17:00 17:20 17:40 12:00 18:20
B Tx Signal Strength
Current: -63 dBm Average: -85 dBm Maximum: -81 dBm
B Rx Signal Strength
Current: -60 dBm Average: -62 dBm Maximum: -56 dBm

B Rx Cho
Current: -60 dBm Average: -62 dBm Maximum: -56 dBm

Datasource: txRate o} A &

wireless-stations / Wireless AP Client 24:A4:3C:42:8B:50 Performance
40

20

dB

20

10+

14:40 15:00 1520 15:40 16:00 16:20 16:40 17:00 17:20 17:40 12:00 18:20
M Signal to Nolse Ratio
Current: 35 dB Average: 33 dB Maximum: 39 dB

Datasource: rxSignalStrength

wireless-stations / Wireless AP Client 24:A4:3C:42:8B:50 Performance
400 m

350 m
w200 m

230 m

200 m
14:40 15:00 1520 15:40 16:00 16:20 16:40 17:00 17:20 17:40 18 00 18:20

B Uptime: 9.45 hours [0.39 days / 0,06 weeks

Aggmon and Aggmon / Distmon creation timeframe

From the initial concept through Aggmon to Aggmon / Distmon as it is
available today, it took one guy (myself) about four months of honest

labour™ in his free time to get the system up and working

| am proud to say that | am now able to efficiently monitor my network to the
best possible extent, and am able to introduce new sensors of any kind
within several minutes, hours at worst. | can, but so can you!

*1 day of honest labour = 8 hours spent on working on this project only

ifDescr="Ethernetl/0/27"
ifAlias="E EPIX1"

VITA-ESXIO:
Doun

wITA-FUProd TP_SUr14-01
Up

TP-Nagioso TP-SUAZ14-0Z
Up Up
TP-ESKi02
& i
Y-
TP-DC03 %
I sr\-__\1 NHIT
TP=THGOL . b
Up =3
Mikroty
& 1
Y
TP-YEEOL
Up

ﬂff_frf"""‘ RN
i Up

-] i oY
TP-ES0L TP-0C02
Up U

& oY
TP-RAD Ry TP-FS01

o TP-MOT e

lin

Commercial
monitoring

system

e Proper developmental documentation!

e A collaborative effort, perhaps?

Live demo

o
{FAReE

Thank you for your attention!

