
Aggregated Monitoring
Chapter One: RouterOS

Bartłomiej Kos
MUM Slovenia
25-26 Feb 2016

Who am I?
Bartłomiej Kos
bkos@fast-stable-secure.net

● A network engineer
● 9 years in the business
● A MikroTik fan (MTCRE, MTCWE)

mailto:bkos@fast-stable-secure.net
mailto:bkos@fast-stable-secure.net

Traditional approach to network monitoring

a network

Traditional approach to network monitoring
● Many systems hitting network devices over and over again to get the

same data, but to display different results (graphing, threshold
monitoring, reachability)

● All the workload inherent to monitoring heaped upon one monitoring
system (scalability issues)

● The need for full network reachability between network devices and the
monitoring system

● The need to accommodate oneself to a monitoring system’s limited
flexibility in order to monitor one’s network

So what do I want from a monitoring system?
● The ability to handle as many different check types as possible

(graphing, threshold monitoring, reachability monitoring, etc.)

● Flexibility that allows speedy addition of new monitoring types, both
standard (SNMP) and esoteric (CLI)

● Good scalability (up and out)

● Extreme simplicity for allowing one to quickly learn how to get the most
of the system without the need to learn some complicated coding
techniques (educational as well as operational benefits)

Going Aggregated some two years ago: the base
● Graphing
● Threshold monitoring
● Alerting
● Performance
● Manageability and extensibility

The choice:

Going Aggregated some two years ago: the architecture
And so, the Aggmon was born...

● Graphing: pnp4nagios
● Threshold monitoring: Nagios Core
● Alerting: Nagios Core
● Extensibility:

○ check_snmp as the base for most of the sensors
○ custom Bash scripts for handling more esoteric checks
○ even more custom Bash scripts for extracting and processing console retrieved data
○ Grand Unified Gatherer Bash script as the means of discovering and identifying

devices, and adding and updating their respective sensor configurations

● Performance: good at first, but then, well...

Going Aggregated some half a year ago: the performance

Active Host / Service Checks: 1067 / 20087

Going Aggregated some four months ago: the big break
bkos: Hey, I’m developing this really great monitoring system thing; can I
snmpwalk and snmpget some of your boxes?

psi: No, you can’t. But you can use a statistics broker that’s available with
my boxes’ central management system.

bkos: A statistics broker?

Going Distributed: situational analysis
What a monitoring system usually does?

● Devices discovery and identification
● Sensors setup
● Data retrieval
● Data processing
● Data presentation
● Historical data storing

Going Distributed: the Aggmon condition

Aggmon

devices discovery,
 devices identification,
sensors setup (!!!!!!)

data retrieval (!!!)
and

 data processing (!!!)

data presentation (!) historical data storing (!!)

A lot of Compute + A lot of Storage

Distmon

D

Going Distributed: the Distmon condition
Aggmon

A

sensors
setup

(!)

data
presentation

(!)

historical
data storing

(!!)

devices discovery
and identification

(!)

data retrieval (!!)
and

 data processing (!!)

A lot of Storage A lot of Compute

Data
transfer

Distmon: the cookbook
Codingware required

● A Linux (a BSD can do but needs extra care as far as compatibility goes)
● The GNU Bourne Again SHell (Bash)
● grep, sed, and some other standard GNU utilities
● ping and net-snmp
● OpenSSH (ssh, scp)
● GNU bc (for big numbers and floating point calculations)

● Github

Distmon: the recipes
● Devices discovery and identification

○ distmon_runner.sh
● Data retrieval

○ distmon_rover.sh
● Data processing

○ distmon_regulator.sh
○ distmon_presenter.sh

● Sensors setup
○ aggmon_gatherer.sh

● Data presentation and historical data storing
○ Nagios Core + pnp4nagios

Distmon: a simplified block diagram of sorts
variables reusable

between scripts
(global)

functions reusable
between scripts

(global)

a script

+ pre-run
+ script-specific functions
+ loops (main body)
+ post run

a script

+ pre-run
+ script-specific functions
+ loops (main body)
+ post run

work
results

work
results

work
resultssubscript 1 subscript n subscript 1 subscript n

Distmon Runner

D

A

1. ICMP reachability test

2. SNMP Community discovery test

3. SSH key based authentication test

4. SCP the results
over to Aggmon

Distmon Runner
● Simple checks

○ Is the host reachable?
○ Does the host respond to a known SNMP Community string?
○ If it does, get its SNMP sysDescr.0
○ Also try to find if the device accepts key-based passwordless login
○ Hosts without a matching SNMP Community or unreachable will not get processed by

the other scripts until Runner properly discovers them

● The gathered data stays with the Distmon server, a copy is sent over to
Aggmon server(s) via SCP

Distmon Rover

D

1. Source Runner’s
properly discovered
hosts’ list

2. snmpbulkwalk device with
standard and device-type type
specific MIB branches to
gather raw SNMP data

Distmon Rover
● Purpose driven

○ See if the host is up. If it is not, leave it alone until a next scheduled Rover session
○ snmpbulkwalk a host with some generic SNMP MIB branches (IF-MIB::ifTable, etc.)
○ snmpbulkwalk the host with device-specific SNMP MIB branches, depending on device

type (MIKROTIK-MIB::mtxrQueues, etc.)
○ Data is saved as retrieved, a timestamp is added for further data processing

● Easy to adapt for data retrieval from new device types (it is just a simple
Bash script, after all)

○ if DeviceType1 then GenericMIB + MIB1::branch1 + MIB2::branch2
if DeviceType2 then DenericMIB + MIB1::branch10 + MIB10::branch1

Distmon Regulator

D

1. Selectively concatenate Rover’s retrieved raw SNMP data

2. Convert raw data to outright Bash variables; leave out anything unwieldy -
just focus on the necessary data

3. Designed with the preference of Bash “parameter expansion” magic over
grepping and sedding to save speed and processing power

Distmon Regulator
● The fastest script of the Framework

○ To do its work, it only needs the raw data files gathered by Rover. It does not interact
with network devices in any way

○ Regulator makes sure to, in the end, generate files that contain only Bash variables that

are ready for sourcing by the next script

● Unless there is a specific need for doing otherwise (and there has not
been so far), Regulator takes care of only the data that is easily
convertible

Distmon Presenter

D

A1. Source Regulator-
generated, Bash variables-
filled flat files

3. SCP calculated and
distributed results
over to Aggmon

2. Spawn subscripts for
calculating and distributing
logically grouped data types
across their respective
designated data files

Distmon Presenter
● Responsible for preparing data for direct use by sensors without them

having any further need to do any intensive processing of any kind

● Assisted by GNU bc anytime big number (64 bit) or floating point
calculations need to be done

● Relatively the most complicated of all, but easily expandable, owing to
subscript-based design (new functionality = new subscript)

● Sends all its calculated data to Aggmon server(s) via SCP

Aggmon Gatherer

A
1. Browse the data received from Distmon(s)

2. Generate sensor configurations for running with Nagios Core (threshold monitoring)
and pnp4nagios (graphing)

Going Distributed: use case No. 1

D
ICMP
SNMP

A A

D
ICMP
SNMP

Going Distributed: use case No. 2

D
ICMP

D
SNMP

CLI

D
ICMP
SNMP

A A

Going Distributed: use case No. 3

10.0.0.0/24

10.0.0.0/24

A

A

D

D

D

NAT
GW

NAT
GW

Distmon

The Aggmon / Distmon performance

+ _script_name='Distmon Rover'
+ _script_run_time=11

+ _script_name='Distmon Regulator'
+ _device_count=20
+ _script_run_time=3

+ _script_name='Distmon Presenter'
+ _device_count=20
+ _object_count=1107
+ _script_run_time=8

load average: 1.43, 0.91, 0.75

Aggmon

Service Check Execution Time: 0,00 / 0,00 / 0,000 sec
Service Check Latency: 0,00 / 1,00 / 0,016 sec

Host Check Execution Time: 0,00 / 0,00 / 0,000 sec
Host Check Latency: 0,00 / 0,00 / 0,000 sec

Active Host / Service Checks:25 / 3393

SNMP interface data
A single object data file
provides a wealth of
information that can be used
by a multitude of sensors

● Traffic graphs (next slide)
● IfUpDown alarm
● IfErrors alarm
● IfUtilisation alarm
● STP transition alarm

And whatever else you can
think of putting here!

ifDescr="Ethernet1/0/27"
ifAlias="E_EPIX1"
ifHighSpeed="10000"
ifAdminStatus="up"
ifOperStatus="up"
inBitsPerSecond="1351290279.20000000000000000000"
outBitsPerSecond="64916717.33333333333333333328"
inUcastPktsPerSecond="6083.01666666666666666666"
outUcastPktsPerSecond="9619.01666666666666666666"
inMcastPktsPerSecond="109693.81666666666666666666"
outMcastPktsPerSecond=".48333333333333333333"
inBcastPktsPerSecond="87.68333333333333333333"
outBcastPktsPerSecond=".05000000000000000000"
relativeInUcastPktsPerSecond="5.25011180443365534100"
relativeOutUcastPktsPerSecond="99.99445573510888399100"
relativeInMcastPktsPerSecond="94.67421072686763029700"
relativeOutMcastPktsPerSecond=".00502449005757372500"
relativeInBcastPktsPerSecond=".07567746869871434600"
relativeOutBcastPktsPerSecond=".00051977483354210900"
inErrorsPerSecond="0"
outErrorsPerSecond="0"
inIfLoad="13.51290279200000000000"
outIfLoad=".64916717333333333333"
stpForwardingStateTransitionsPerInterval="0"
__resultsFreshnessCheckValue="1"

SNMP interface graphs

CLI WiFi Registration Table client extracted and parsed
id="*1cc";interface="wlan1";radio_name="AirGrid M5 HP";mac_address="24:A4:
3C:42:96:EE";ap="false";wds="false";bridge="false";rx_rate="36.0Mbps";
tx_rate="54.0Mbps";packets="275407,209694";bytes="363721441,23250692";
frames="275407,209785";frame_bytes="364290329,22002264";hw_frames="
336462,212411";hw_frame_bytes="456886638,30538226";tx_frames_timed_out="0";
uptime="07:18:13";last_activity="00:00:02.460";signal_strength="-52
dBm@6Mbps";signal_to_noise="39";signal_strength_ch0="-52";
strength_at_rates="-52dBm@6Mbps 30ms;-52dBm@12Mbps 8m20s130ms;-52dBm@18Mbps
3m33s910ms;-52dBm@24Mbps 3m32s800ms;-53dBm@36Mbps 2s460ms;-52dBm@48Mbps
6s250ms";tx_signal_strength="-48";tx_ccq="77";rx_ccq="99";p_throughput="
29860";distance="1";nstreme="false";framing_mode="none";routeros_version="
2.9.31";last_ip="192.168.192.195";ieee8021x_port_enabled="true";
authentication_type="wpa2-psk";encryption="aes-ccm";group_encryption="aes-
ccm";management_protection="false";compression="false";wmm_enabled="false";
registered_to="mt1-war91:41001"
inBytesPerSecond="6"
outBytesPerSecond="0"
clientUptimeSeconds="26293"

CLI WiFi Registration Table client graphs

Aggmon and Aggmon / Distmon creation timeframe
From the initial concept through Aggmon to Aggmon / Distmon as it is
available today, it took one guy (myself) about four months of honest
labour* in his free time to get the system up and working

I am proud to say that I am now able to efficiently monitor my network to the
best possible extent, and am able to introduce new sensors of any kind
within several minutes, hours at worst. I can, but so can you!

* 1 day of honest labour = 8 hours spent on working on this project only

Plans for the future: Nagios automatic map charting

ifDescr="Ethernet1/0/27"
ifAlias="E_EPIX1"
...

Plans for the future: noSQL database integration

D

noSQL DB

D

A

Commercial
monitoring

system

Big Data
engine

Plans for the future: Thruk ‘scale out’ integration

AAAA

Thruk

Plans for the future: ...
● Proper developmental documentation!

● A collaborative effort, perhaps?

Live demo

AD

D

NAT
GW

NAT
GW

Thank you for your attention!

