

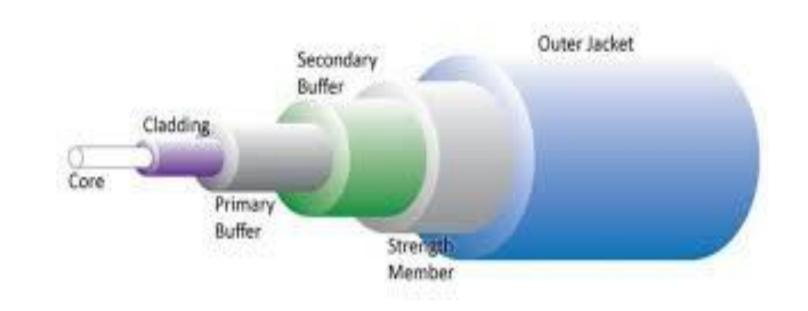
Connecting Mikrotik With Fiber Optic

Antonius Duty Susilo

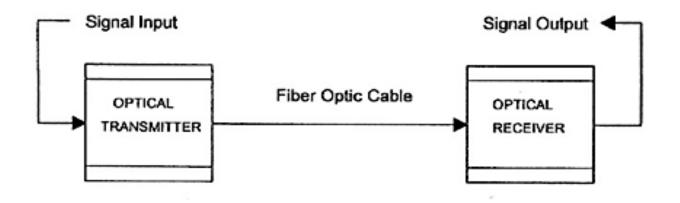
MUM Indonesia 2019

MUM Indonesia 2019

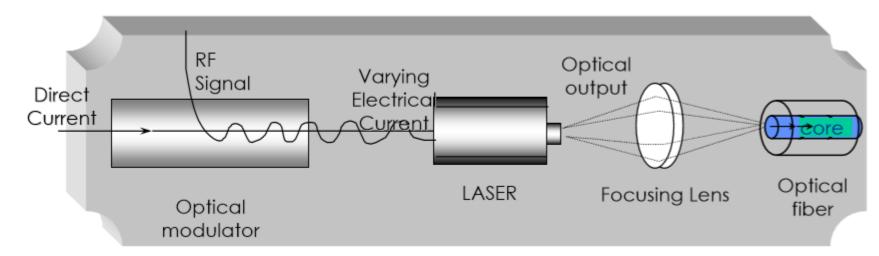
Profile

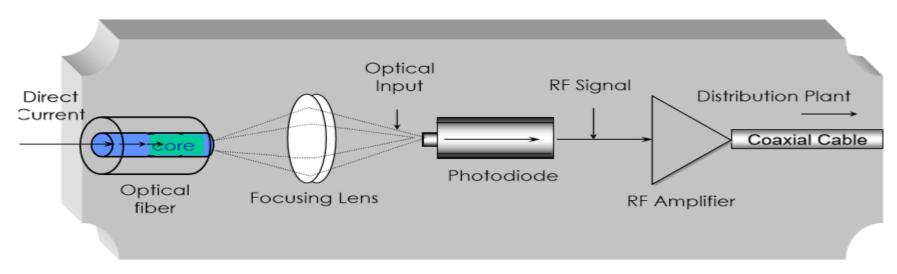

Antonius Duty Susilo

- Email :dutymlg@gmail.com
- Mikrotik Trainer and Consultant
- Instructor Cisco Academy, Oracle Academy and Oracle WDP
- Ph.D Student in Universiti Teknikal Malaysia Melaka (UTEM) Malaysia
- Lecturer in Binus Malang, STMIK Pradnya Paramita Malang, Universitas Ma Chung Malang


Why Fiber Optics?

 Fiber is the least expensive, most reliable method for high speed and long distance communications




Theory

- A basic fiber optic communications system consists of three basic elements:
 - Fiber media
 - Light sources
 - Light detector

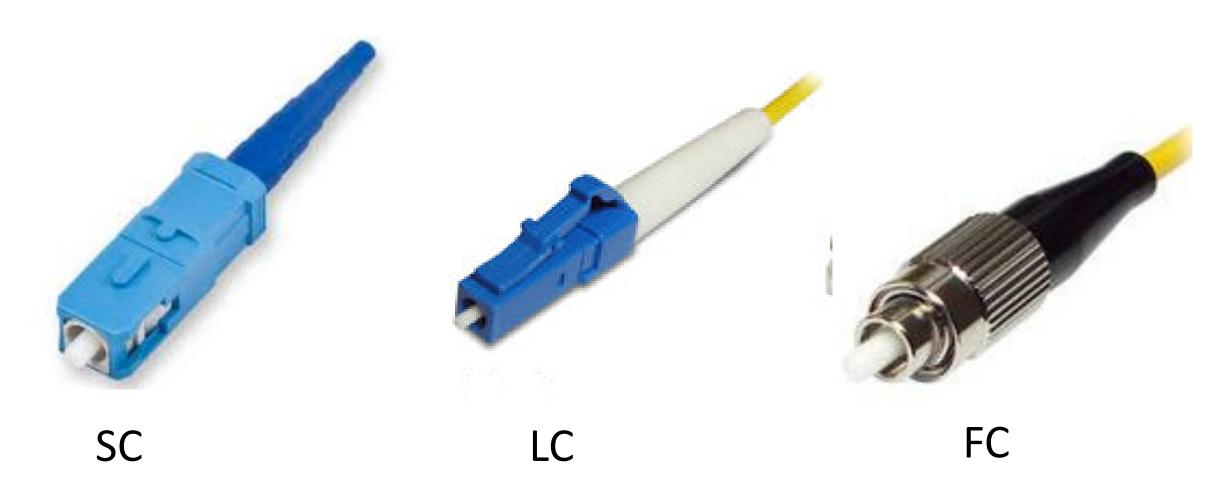
Optical Transmitter Component

Types of Patch Cord

- Single mode
 - only one signal can be transmitted
 - use of single frequency
- Multi mode
 - Several signals can be transmitted
 - Several frequencies used to modulate the signal

Connectors

Connection to terminal devices, optical cross connect panels and couplers


Classiffications:

- Fiber to fiber connector.
- Fiber to source connector.
- Fiber to detector connector.
- Multiportcoupler connector.

Various Kinds of Connectors

- 1. SMA (Sub Minaturetype A)Connector.
- 2. Biconic Biconic Connector.
- 3. ST (straight tip) Connector.
- 4. SC (Square connector) Connector.
- 5. FC (Face Contact)Connector.
- 6. FDDI FDDI (Fiber Distributed Data Interface)Connector.
- 7. D4 (D in 4 atau Deutchelnstitut Normung/German Institute for Standardization).
- 8. Escon connector.

Connectors

SFP (Small Form-Factor Pluggable)

It is a hot-pluggable transceiver that plugs into the SFP port of a network device

How to choose SFP

- Mode
- Range between Node
- Throughput

SFP

	XFP	SFP	SFP+
Stands for	10 Gigabit Small Form Factor Plug gable	Small Form-factor Pluggable	Small Form-factor Pluggable plus
Data rate	10G	155M/622M/ 1.25G 2.5G/3G/4.25G	6G/8.5G/10G
Terms	Dual fiber Single Fiber/WDM CWDM DWDM	Dual fiber Single Fiber/WDM CWDM DWDM	Dual fiber Single Fiber/WD M CWDM DWDM
Distance	220m/300m/ 2km/10km/ 20km/40km/ 60km/80km/ 120km	300m/2km/ 10km/15km/ 20km/40km/ 60km/80km/ 100km/120km/ 150km	220m/300m/ 2km/10km/ 20km/40km/ 60km/80km
Wavelength	850nm/1310nm/1 550nm 1270nm/1330nm 1270nm-1610nm ITU17~ITU61	1550nm	850nm/1310nm/1 550nm 1310nm/1490nm/ 1550nm 1270nm-1610nm ITU17~ITU61

SFP (Small Form-Factor Pluggable)

S+DA0003 SFP+ direct attach cable, 3m S-85DLC05D SFP (1.25G) module, 550m, Multi Mode

S-3553LC20D Two SFP (1.25G) module kit, 20Km, single mode

SFP (Small Form-Factor Pluggable)

S-31DLC20D

SFP (1.25G) module, 20KM, Single Mode

S-55DLC80D

SFP 1.25G
module for
80km links
with Dual LCconnector Indonesia 2019

S+AO0005

SFP+ Active Optics direct attach cable, 5m

SFP to Ethernet

S-RJ01 RJ45 SFP 10/100/1000M copper module Details

Product code S-RJ01

Connector RJ45

Data Rate 1.25Gbps

Distance 100m

Operating –

Temperature

0 C +85 C

SFP Single Mode

S-31DLC20D SFP (1.25G) module, 20KM, Single Mode Details

Product code S-31DLC20D

Connector Dual LC UPC

Data Rate 1.25G

Distance 20KM

Format SFP

Mode SM

Operating Temperature -40 to +70C

Wavelength 1310nm

SFP Multi Mode

S-85DLC05D

SFP (1.25G) module, 550m, Multi Mode

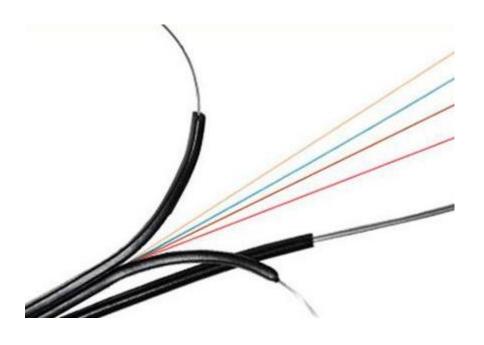
Product specifications

Details	
Product code	S-85DLC05D
Connector	Dual LC UPC
Data Rate	1.25G
Distance	550M
Format	SFP
Mode	MM
Operating Temperature	-40 to +70C
Wavelength	850nm
Suggested price	\$22.00

SFP

S+DA0003 SFP+ direct attach cable, 3m

This is highly cost-effective way to connect two SFP/SFP+ devices (for example two units of CCR1036-8G-2S+) for very short distances, within racks and across adjacent racks.

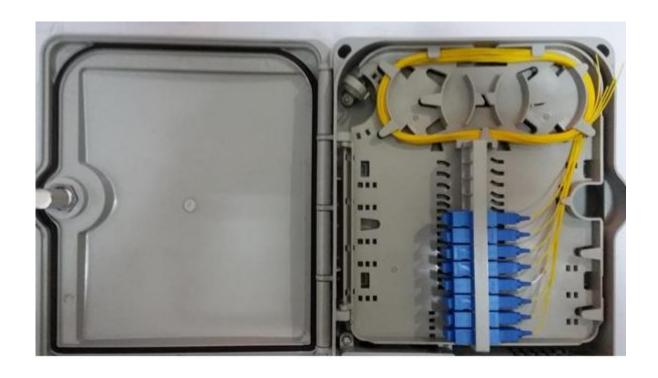

S+A00005

SFP+ Active
Optics direct
attach cable, 5m

5m SFP+ 10Gbps Active Optics direct attach cable. This is highly costeffective way to connect two SFP/SFP+ devices for very short distances, within racks and across adjacent racks. It works with all our products with SFP/SFP+

Drop Cable / Drop Wire

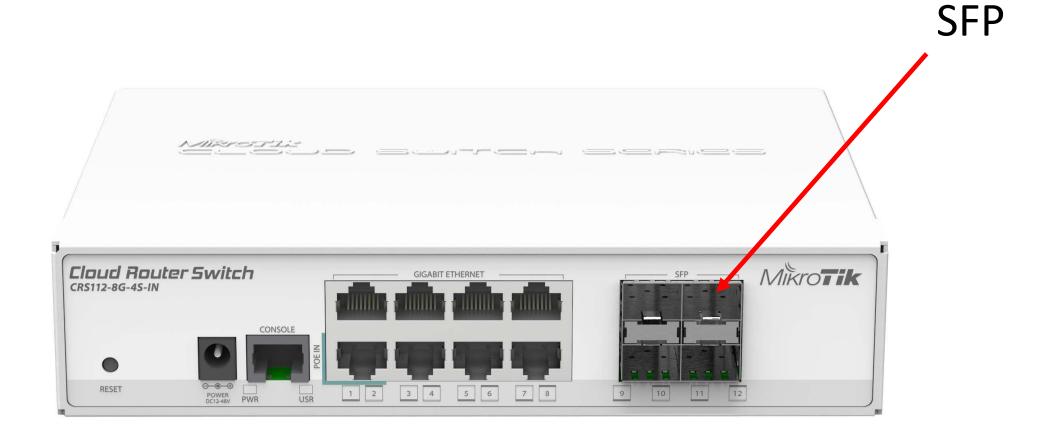
Pigtail


Fast Connector

Adapter SC

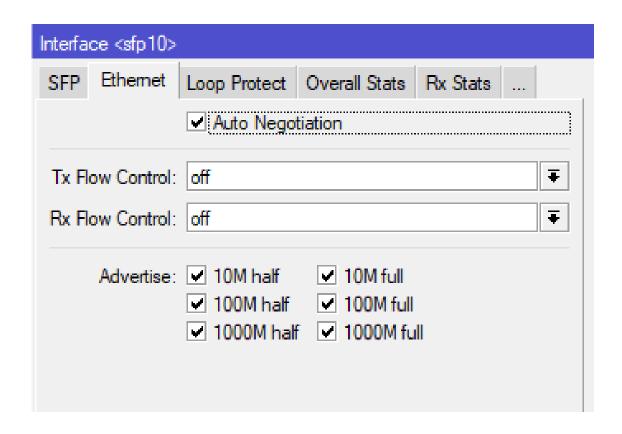
ODP

Converter Fiber To Ethernet


Measuring Instruments

Visual Fault Locator

SFP Port Mikrotik



Troubleshooting SFP

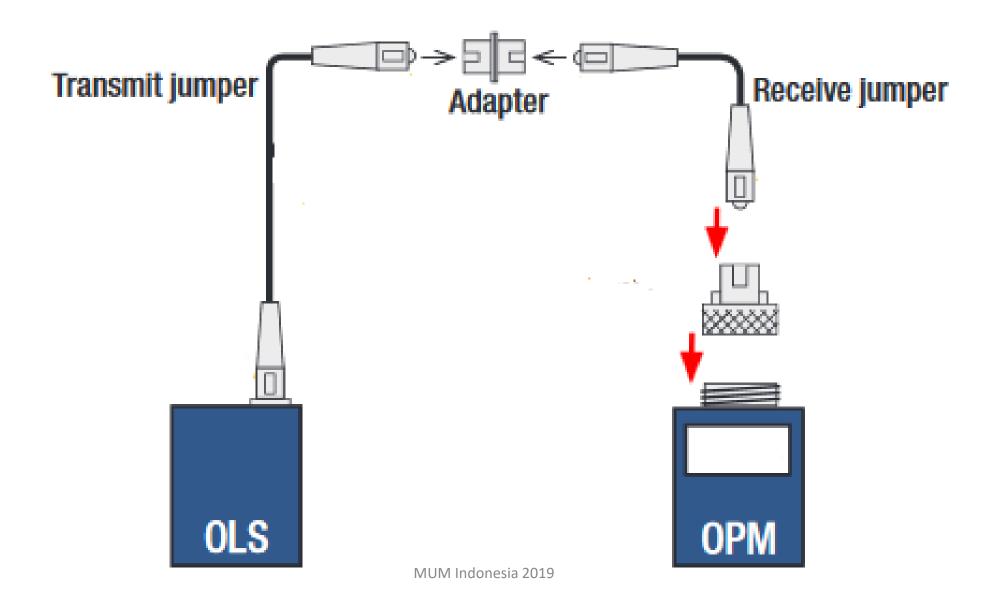
Both devices can be connected to each other if SFP Transceivers are installed on both sides in the same mode. But if it turns out that you have used the transceiver in the same mode but failed, then do the following:

First configure the SFP interface. Double click on the SFP interface, then on the Ethernet tab, check auto-negotiation as shown below:

Troubleshooting

Connecting Mikrotik

CRS112-8G-4S-IN



MUM Indonesia 2019

ODP

Measuring Instrument

How to using OPM and OLS

In OLS and OPM, there are several settings, Lambda / or wavelength:

- 850 nm is used to measure multimode
- 1310 nm is used to measure singlemode with a relatively short distance (10 km).
- 1550 nm is used to measure single mode with a long distance backbone (above 10 km)

Testing Procedure

- Connect the optical light source to the transmitting end of the test cable.
- Connect the power meter to the receiving end of the test cable.
- Turn on the source and select the wavelength you want for the loss test.
- Turn on the meter, select the "dBm" or "dB" range and select the wavelength you want for the loss test.
- Measure the power and loss at the meter.

Splicer

 A fiber optic fusion splicer is a device that uses an electric arc to melt two optical fibers together at their end faces, to form a single long fiber.

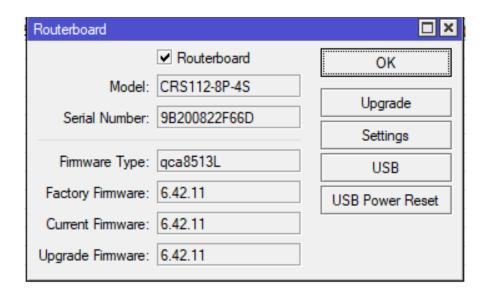
Stripper and Cleaver

The process of fusion splicing

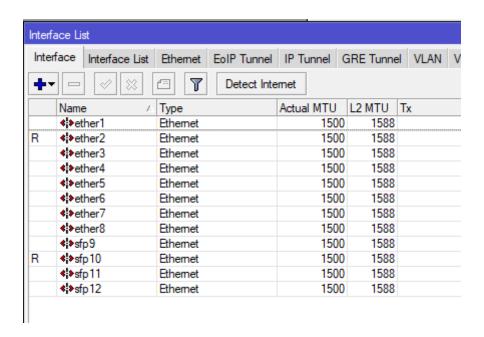
1. Stripping the fiber

Stripping is the act of removing the protective polymer coating around optical fiber in preparation for fusion splicing through a mechanical stripping device similar to a wire-stripper.

2. Cleaning the fiber

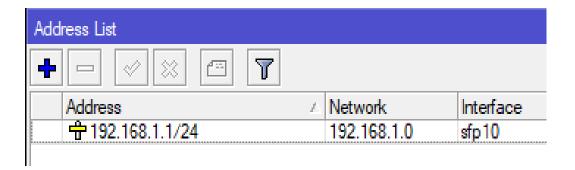

Clean bare fibers is with alcohol and wipes

3. Cleaving the fiber

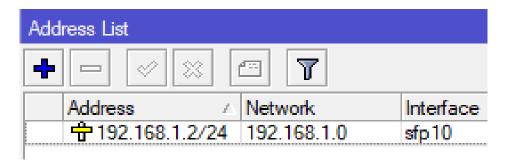

The fiber is cleaved by Cleaver

4. Splicing the fibers

Implementation in Mikrotik

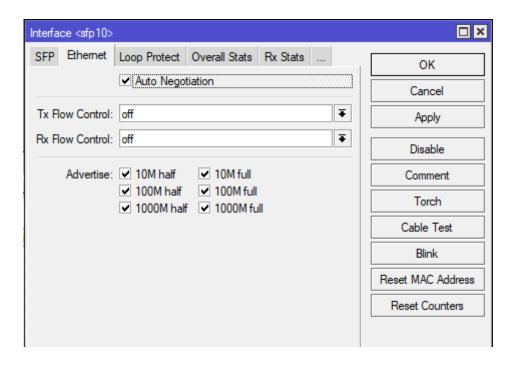


Interface



IP Address

• R1


R2

Inter<u>face</u>

Interface <sfp10></sfp10>		□×
General SFP E	themet Loop Protect Overall Stats	ок
	✓ Module Present	Cancel
	Rx Lose	Apply
	☐ Tx Fault	Арріу
Connector Typ	De: LC	Disable
Link Length 9u	m: 10000 m	Comment
Link Length 50u	m: 550 m	Torch
Link Length 62u	m: 550 m	Cable Test
Link Length Copp	er:	Blink
Vendor Nar	ne: MIKROBITS	Reset MAC Address
	er: SFP-1G-LH-SM	Reset Counters
Vendor Revision	on: A0	
Vendor Ser	al: M19010100119	
Manufacturing Da	te: 18-12-15	
Waveleng	th: 1310.00 nm	
Temperatu	re: 38 C	
Supply Voltage	ge: 3.290 V	
Tx Bias Curre	nt: 25 mA	
Tx Pow	er: -4.718 dBm	
Rx Pow	er: -5.725 dBm	

Interface

Result

• From R1 to R2

```
[admin@R1] > ping 192.168.1.2

SEQ HOST SIZE TTL TIME STATUS

0 192.168.1.2 56 64 3ms

1 192.168.1.2 56 64 2ms

2 192.168.1.2 56 64 1ms

3 192.168.1.2 56 64 9ms

4 192.168.1.2 56 64 1ms
```

• From R2 to R1

```
[admin@R2] > ping 192.168.1.1

SEQ HOST SIZE TTL TIME STATUS

0 192.168.1.1 56 64 3ms

1 192.168.1.1 56 64 1ms

2 192.168.1.1 56 64 2ms

3 192.168.1.1 56 64 1ms
```

Demo Live

Thank You dutymlg@gmail.com 0816559940