Troubleshooting load balancing

Mikrotik User Meeting Malaysia, 12 june 2019

Achmad Mardiansyah achmad@glcnetworks.com GLC Networks

Agenda

- Introduction
- The basics: packets, connection and routing
- Load Balancing (LB) techniques
- Some issues and recommendations
- Q & A

What is GLC?

- Garda Lintas Cakrawala (<u>www.glcnetworks.com</u>)
- Based in Bandung, Indonesia
- Areas: Training, IT Consulting
- Certified partner for: Mikrotik, Ubiquity, Linux foundation
- Product: GLC radius manager
- Regular event: webinar (every 2 weeks, see our schedule on website)

www.dichetworks.com

About me

- Name: Achmad Mardiansyah
- Base: bandung, Indonesia
- Linux user since 1999, mikrotik user since 2007,
- Mikrotik Certified Trainer (MTCNA/RE/WE/UME/INE/TCE/IPv6)
- Mikrotik Certified Consultant
- Teacher at Telkom University (Bandung, Indonesia)
- Website contributor: <u>achmadjournal.com</u>, <u>mikrotik.tips</u>, <u>asysadmin.tips</u>
- More info: http://au.linkedin.com/in/achmadmardiansyah

Past experiences

- 2019, Congo (DRC): build a wireless ISP from ground-up
- 2018, Malaysia: network revamp, develop billing solution and integration, setup dynamic routing
- 2017, Libya (north africa): remote wireless migration for a new Wireless ISP
- 2016, **United Kingdom**: facilitates workshop for a wireless ISP, migrating a bridged to routed network
- 2015, West Borneo: supporting wireless infrastructure project
- 2014, **Senegal (west africa)**: TAC2 engineer for HLR migration from NOKIA to ERICSSON

About Telkom University

- Located in Bandung, Indonesia
- 7 Faculties, 27 schools
- Areas: Engineering, Communications, Computing, Bussiness and management, Arts
- 650+ Academic staff, 400+ Administration staff, 20000+ students
- An exchange program
- Runs mikrotik academy program

Mikrotik academy @ TEL-U

- Started in 2013
- Embedded into schools curriculum
- 100% hands-on

NETWORKS

Get MTCNA certification

About load balancing

Why should i care?

- Lots of tutorials in internet!!!
- Tons of pages, tutorial, videos

Questions for reader:

- Do you really understand that?
- Did the writer understand that?
- Is it really works as expected?

Are those webpages really work on you?

- Information overloaded... which one suits you?
- Perhaps their network environment is different than yours
- You need to understand how it works...

- > 3. Saya mau coba Load Balance Ethernet+Bolt LTE ZTE MF90
- > http://mikrotik ?id=76
- > http://emails.isp-load-balancing-pcc-dengan-failover-tanpa-script
- > tapi belum berhasil
- > Apa trainernya dah pernah coba

dulu pernah diimplementasikan disini:

http://www.glcnetworks.com/main/maret-2014-optimasi-jaringan-pada-sebuah-kantor-di-jakarta/

mudah2an membantu ya

The basics: packet, connection, routing

What is packets?

How do you know packet's statistics?

Measured in pps (packet per second) -> part of router performance

Interfa	ace List								
Interl	face Interface List Eth	ernet EoI	P Tunnel	IP Tunne	el GRE Tunnel	VLAN VRRP	Bonding LTE		
4-		▼ De	tect Inte	rnet					
	Name /	Туре	Actu	L2 MTU	Tx	Rx	x Packet (p/s)	Rx Packet (Commei
R	«¦> ether1	Ethernet	1500	1580	3.1 Mbps	165.3 kbps	405	244	to ISP1
R	∜¦> ether2	Ethernet	1500	1580	140.4 kbps	2.3 Mbps	191	345	
R	∜ vlan3200	VLAN	1500	1576	2.5 Mbps	784.7 kbps	293	153	to inter-
R	∜ vlan3216	VLAN	1500	1576	0 bps	0 bps	0	0	to IDS (
R	∜¦> ether3	Ethernet	1500	1580	21.4 kbps	5.4 kbps	10	5	to ISP2
R	∜¦> ether4	Ethernet	1500	1580	25.5 kbps	47.2 kbps	36	72	to SERV
R	∜¦> ether5	Ethernet	1500	1580	60.6 kbps	51.1 kbps	81	84	to mana
	∜¦> ether6	Ethernet	1500	1580	0 bps	0 bps	0	0	
	∜¦> ether7	Ethernet	1500	1580	0 bps	0 bps	0	7	
	ala 11 A	ert r	4500	4500	A.I.	61			

Layer 3 header (which one is IPv4?)

Offsets	Octet				(0								1							2	!								3		
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30 3
0	0		Ver	sior	1		11	fL.				DS	SCP			EC	N							То	tal	Len	gth					
4	32	Identification Flags Fragment Offset																														
8	64	Time To Live Protocol Header Checksum																														
12	96														S	our	ce I	PA	\ddr	ess												
16	128	Destination IP Address																														
20	160	Options (if IHL > 5)																														

Offsets	Octet					0									1							2	2			1			3	3		
Octet	Bit	0	1	2	:	3	4	5	6	7	8	9	10	11	12	13	4	15	16	17	18	19	20	21	22	3 2	24 25	26	27	28	29 3	30 31
0	0	- 10	Ve	ersio	n				Tra	fic	Cla	ss											F	low	Lab	1						
4	32							ı	Paylo	ac	Le	ngt	h								Ne	xt F	lea	der		П		H	Юр	Limi	t	
8	64																															
12	96			Source Address																												
16	128		Source Address																													
20	160																															
24	192																															
28	224															Do	ntim	ntie	on A	dd.												
32	256															De	stir7.	CH I AC	m A	uur	053	,										
36	288																															

Layer 4 header (which one is TCP?)

Offsets	Octet				0								1							:	2								3		
Octet	Bit	0	1	2	3	4	5 6	7	8	9	10	11	12	13	14	15	16	17	18	8 19	20	21	22	23	24	25	26	27	28	29	30 3
0	0						So	urc	ер	ort												D	est	tina	tion	ро	rt				
4	32													Se	equ	ence	e nu	mb	er												
8	64										ļ	Ackr	now	led	gme	nt r	num	ber	(if	f ack	se	t)									
					T,	Rece	erved	N	С	Е	U	A	P	R	s	F															
12	96	Da	ıta c	offset	1		0 0	S	W	С	R	C	S	S	Y	I							Wi	ndo	w S	ze					
								3	R	Е	G	K	Н	T	N	N															
16	128						C	nec	ksu	m											Ur	gen	t po	oint	er (i	UE	RG S	et)			
20	160						Optio	ns	(if d	ata	offs	set:	> 5.	Pa	dde	d at	the	en	d v	with '	"0"	byte	s if	ne	cess	an	(.)				

Offsets	Octet				0)								1							:	2							:	3			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	0							So	urc	еро	rt												ı	Dest	ina	tion	por	rt					
4	32								Len	gth														C	hec	ksu	m						

What is connection?

- A Connection is identified by a set of IP addresses (source and destination) and ports (if necessary.
 E.g. source and destination port)
- When you access a remote computer, you will create a connection

Questions:

- Is packet part of connection?
- Is connection part of packet?
- Can 1 connection have more than one packets?
- Do packets have mechanism between them so that they know their arrangement or connection between them?
- Can router identify relation between packet? E.g. keep track the relations between packet?

Mikrotik supports connection tracking

Mikrotik conn-track supports protocol: TCP, UDP, ICMP and others

QUESTION

HOW MANY CONNECTION(S) YOUR BROWSER CREATE WHEN YOU OPEN A WEBSITE?

Answer: inspect the web elements

 Client can open multiple connections to get website components

Example: Single connection to a website

Website with single connection:

http://test.glcnetworks.com

Routing and forwarding

Routing and Forwarding

- A process to forward a packet from input interface to output interface, based on information on routing table.
- As we use private IP address, there will be a NAT process before sending out to exit interface
- To check your public IP address, go to <u>http://test.glcnetworks.com</u>

Adjust routing (mangle: mark-routing)

- Process to mark a packet to for routing purpose
- Steps:
 - Create firewall mangle with action mark-routing
 - Create routing entry with defined-mark
 - Create NAT rule if we use private IP address
- To check our public IP address, go to http://test.glcnetworks.com

Forward traffic via ISP2 using mangle

Forward traffic via ISP1 using mangle

Load Balancing

What is (traffic) load balancing?

- Is a process to forward traffic on several links
- Applied on router
- != failover

Benefits:

 Increase utilisation of upstream links

Load balancing techniques

Method	Per-connection	per-packet	
Firewall marking	YES	YES	
ECMP	YES	NO	
PCC	YES	NO	
Nth	YES	YES	
Bonding	NO	YES	
OSPF	YES	NO	
BGP	YES	NO	

How PCC works?

- PCC = Per Connection Classifier
- PCC can identify the connection and mark them for further processing
- Example: a client opens a multi-object website via single ISP. both addresses (src-address and dst-address) are used to identify connection
- PCC can identify each connection made from client

Applying PCC

You need to understand the concept of connection (conn-track=active)

Total

create

connection

you want to

- Applied on firewall mangle
- Need to define classifier. Can be based on:
 - Source or destination address only
 - Both addresses
 - o Etc
- Define connection number and total connection

Connection

identifier

Exercise: Classifier=src-addr

Exercise: Classifier=dst-addr

Exercise: Classifier=both-address

Exercise: Classifier=both-address-and-ports

Example: LB with classifier: both

address

Some issues & recommendations

Some issues & recommendations

Issues:

- Beware of NATed connection -> webserver will see inbound connection from 2 ip public addresses
 - o page will not displayed correctly (as it is considered illegal session)
 - o banking / https pages will not allow you to access their website

Recommendations

- If you use NAT, Better to use classifier based on source IP address only ->
 will give client consistent path to the destination
- Avoid NAT if possible -> using public IP address end-to-end -> use BGP -> better performance

QA

Some info

- Hope you are more curious now
- These materials are part of Mikrotik Certified Traffic Control Engineer (MTCTCE) course
- If you are interested, you can sign up to our website

End of slides

- Thank you for your attention
- Please submit your feedback: http://bit.ly/glcfeedback
- Like our facebook page: "GLC networks"
- Stay tune with our schedule

