

web portal for basic router config using tr069 and genieacs

Who am 1?

I'm Jorge Castellet

I'm a Mikrotik Certified Trainer
MTCNA, MTCIPv6E, MTCRE,
MTCTCE, MTCWE, MTCUME,
MTCINE, MTCSE

I'm freelance

j.castellet@yatuaprendes.com

Fazemos cursos e certificamos em Mikrotik com nossos parceiros da **Truenet.**

Basically we need

- TR-069 (Technical Report 069).
- Developed for the automatic management and configuration of the devices.

- Based on SOAP / HTTP.
- Secure self-configuration.
- Functions for management control.
- Integrated environment.

- A Session is a message exchange.
- The CPE starts a Session in response to different events.
- Only CPE starts a Session

- The ACS may request a Session.
- Execute RPC's
- CPE always stars a Session with an "Inform" RPC.

Mikrotik TR-069

- Supports HTTP and HTTPS.
- HTTP authentication.
- Inform.
- Client certificates.
- Data Mode based on the TR-181 Issue2 Amendment 11.

I'm sad

After reading the TR-181 and check the mikrotik wiki....

- >NOT ALL CONFIGURATION OPTIONS ARE AVAILABLE THROUGH TR-069.
 - We need to use scripting for some options, such as channel width.

Mikrotik TR-069

Minimum configuration:

Mikrotik TR-069

• Unfortunately, after a reset, the configuration of the TR-069 is lost.

(and with that, all of our dreams)

We have to use netinstall.

We have an example script in the wiki:

http://wiki.mikrotik.com/wiki/Tr069-best-practices

GenieACS

- Fast and Light Autoconfiguration System.
- Open source.
- TR-069 solution for remote management and provisioning.
- Built on Node.js and MongoDB.

API

- GenieACS provides a powerfull API.
- The API is supported by geniacs-nbi.

- I use this API for:
 - ✓ Check the client status.
 - ✓ Send commands to a client.

Customer Portal

• I want customers to be able to change the basic parameters of their WiFi.

The customer only can access from their place.

• The client only knows the IP of his router: 192.168.88.1.

As this is very difficult to remember .. I'll use the name "config.me"

<u>http://config.me</u>

Previous work.

- To make things flow smoothly, we need to configure our mikoritk.
- I need to:
 - ✓ Add a dns static entry with config.me pointing to 192.168.88.1
 - ✓ A firewall dstnat rule redirecting the http://172.16.100.33.

Customer portal

- Client Authentication Page
 - ➤ Simple authentication.
 - For sure is not secure 100%.
- Router Status Page.
- Wifi Parameters Edit Page.
 - ✓ Enable/disable interface.
 - ✓ Channel.
 - ✓ Protocol.
 - ✓ SSID.
 - ✓ Password.

Customer Portal

- I made it in Express.js
 - ▶I'm not a senior programmer in Nodejs, so keep it in mind.

Customer Portal

- GenieACS stores in MongoDB a copy of the parameters send by the CPE in the Inform Message.
- We query the genieacs database through the api.
- Genieacs is the only one who query the CPE through cwmp.

• Then ... we need to send a Refresh RPC to genieacs in order to obtain the latest parameters and to know if the CPE is still alive.

• We expect the data in genieacs-gui format

Device. IP

Device. IP. Interface

Device.IP.Interface.1

Device. IP. Interface. 1. IPv4Address

Device.IP.Interface.1.IPv4Address.3

Device.IP.Interface.1.IPv4Address.3.Enable true

Device.IP.Interface.1.IPv4Address.3.Status Enabled

Device.IP.Interface.1.IPv4Address.3.IPAddress 192.168.88.73

Device.IP.Interface.1.IPv4Address.3.SubnetMask 255.255.255.0

 But instead we have an object { timestamp: '2019-09-20T09:27:53.175Z', IPv4Address: { '4': { timestamp: '2019-09-20T09:27:53.175Z', object: true, writable: true, Enable: [Object], Status: [Object],

• And to our misfortune, the references are in the genieacs-gui format

```
Device.IP.Interface.1.IPv4Address.3.IPAddress 192.168.88.73
```

Device.IP.Interface.1.IPv4Address.3.SubnetMask 255.255.255.0

Device.IP.Interface.1.Enable true

Device.IP.Interface.1.Status Up

Device.IP.Interface.1.LowerLayers Device.Ethernet.Link.1

• The getvalue function comes to help us

```
exports.getvalue= function(obj,x) {
    x.split(".").forEach(function(v) {
        if (isNaN(v))
            obj=eval('obj.'+v);
        else
            obj=eval('obj['+v+']');
        });
    return obj;
}
```



```
// Looking for the IP assgindd to ether1
 ifstack=misc.getvalue(obj,"Device.InterfaceStack");
 tosearch='';
 for (let [key, value] of Object.entries(ifstack)) {
    if (typeof(value)!= 'object')
       continue;
    if (value.LowerLayer. value=='Device.Ethernet.Interface.1')
       tosearch=value.HigherLayer._value;
  };
```


Login Page

Status Page

Wireles. Basic Settings

Wireless. Security

Example – Change wifi password

Example – Change wifi password

The new passphrase is **LisbonMUM2019**

Example – Change wifi password

Wireless Tables							
WiFi Interfaces	W60G Station	Nstreme Dual	Access Lis	st Registration	Connect List	Security Profiles	Channels
+ 7							
Name /	Mode	Authentication	Types	Unicast Ciphers	Group Ciphers	WPA Pre-Shared	WPA2 Pre-Shared
;;; [tr069 auto created]							
ap-security-0	dynamic keys	WPA PSK WP.	A2 PSK	aes ccm	aes ccm	LisbonMUM2019	LisbonMUM2019
* default	none						
profile1	dynamic keys	WPA PSK		aes ccm	aes ccm	testingloop	pruebaprueba

Test passed !!

If you want to obtain a copy of the virtual machine that I used in this presentation,

Please, send an email to:

j.castellet@yatuaprendes.com

And we will send you a download link.

Thank you for your attention.

