
Scripting on RouterOS
:for fun and $profit

ANDREW COX

Who Am I?
Andrew Cox

Based in Brisbane, Australia

Omega-00 on the MikroTik Forums

A moderator for the MikroTik Facebook Group

A moderator for the MikroTik Reddit Group

Member of The Brothers WISP podcast

Owner of the MikroTik-RouterOS.com blog

General Manager at Bright WiFi

Working with MikroTik since 2005 – v2.9

Bright WiFi is to traditional hotspot solutions
as NASA is to model rocketry…

What is Bright WiFi?

Bright WiFi
ISP AAA, analytics, deployment, and holistic management
•  Automated deployment tool

•  Centralised management and observation portal

•  Easy to use service creation: login page, user access control, billing, reports

•  Modular framework allowing integration of 3rd party services

RouterOS Scripting
But it’s a router?!

•  On-router scripting language

•  Time based & on-event scripts

•  Access to terminal commands & outputs

•  Limited access to read & create files

•  Repeatable function declarations

•  Incredibly powerful tool!

RouterOS Scripting - WhoWhatWhy
But why?!

•  Creating or modifying items en masse – address lists, filter rules, simple queues

•  Automatic events that would otherwise require manual intervention

•  Extending existing functionality to support new features

•  Complex failover options where a solution might otherwise be impossible

•  Setup & Backup solutions onboard the router (remote backup via ftp/email)

•  Regex searching and updating records – proxy or walled garden rule changes

RouterOS Scripting - WhoWhatWhy
Who’s doing this?
•  MikroTik uses scripting to configure your router ..

/system default-configuration print

•  MikroTik Wiki – http://wiki.mikrotik.com/wiki/scripts >100 scripts

•  MikroTik Forums - http://forum.mikrotik.com/viewforum.php?f=9 >5000 threads

•  A Google search for “MikroTik Script” .. half a million results!

•  Some scripting sources:

GregSowell.com – Mr Sowell

Wirelessconnect.eu – Mr Smyth

MikroTik-RouterOS.com – Me!

MTHelper – MikroTik configuration and management tool that allows script deployment!

Getting Started

:local <variable name> <value>

:global <variable name> <value>

:set <variable name> <value>

:put <value>

:log info/warning/error “<value>”

$variablesubstitution

:if (<condition>) do={ } else={ }

[<comand line substitution>]

(<grouping operator>)

comment

Defines a local variable with the optional assigned value

Defines a global variable with the optional assigned value

Updates / Sets the variable to the assigned value

Prints the command result to terminal

Creates a log entry using the provided value

Returns variable data - :put $variable1

If this then that, else this – standard conditional if statement

Allows interpreted value – [/ip hotspot active print count-only]

Useful for math and concatenation functions – (($x * $y) + 50)

Add script comment – must be placed at beginning of line

Basic Scripting Commands

More Advanced
Complex Functions

:resolve example.com

:pick <str> <start> <end>

:len <str>

:find <str> <tofind>

:for <str> from=0 to=10 do={ }

:foreach <str> in=[/ip arp find] do={$cmd }

:do :while OR :while :do

:set arraytest {“a”;”b”;”c”;”d”}

:put ($arraytest->3)

[/ip arp find address~"^192"]

Defined Functions!

Return the IP address resolution for a DNS lookup

Return a specific section of the provided value

Return the value length or number of items in an array

Find the first occurrence of the search term

Perform an action for the required number of iterations

Perform an action against each matching instance

Perform an action against a conditional check

Create an array of values instead of a basic string

Returning a specific value from an array

Searching for matches using a regular expression

Functions/subroutines that can be called inside scripts

Recommendations for starting out

•  Use Notepad++ with syntax highlighting!

•  Use :put to debug your variables

•  Comment out sections when you aren’t sure what broke
or use the :do { } on-error={ }

•  Be aware of the difference :global :local and variable
declarations within scopes	

Practical Uses
Example 1:

Collecting useful information about

router health and adding it to the system

note which is displayed each time a new

terminal is opened.

Things of note:

:set term ($term . “append new value”)

/sys reso – shortening /system resource

:pick command – select portion of a

string to compare against (could also

use regex)

:len command used on array output

:local	term	
	
:set	term	"Up/me:		$[/sys	reso	get	up/me]"	
:set	term	($term	.	"|	CPU:	$[/system	resource	get	cpu-load]%	")	
	
#append/move	to	newline	
:set	term	($term	.	"\n")	
	
#voltage	/	temp	readout	not	available	on	x86	or	x86_64	systems	
:if	([:pick	[/sys	reso	get	arch]	0	3]="x86")	do={	
		:set	term	($term	.		"Voltage:	NA	|Temp:	NA	\n")	
}	else={	
		:set	term	($term	.	"Voltage:	$[:pick	[/sys	health	get	voltage]	0	2]	v")	
:set	term	($term	.	"Temp:	$[/system	health	get	temperature]c	|	")	
}	
	
#get	current	hotspot	and	ppp	ac/ve	sessions	counts	
:set	term	($term	.	"HS	ac/ve:	$[:len	[/ip	hotspot	ac/ve	find]]")	
:set	term	($term	.	"	|	PPP	Ac/ve:	$[:len	[/ppp	ac/ve	find]]")	
	
#update	note	
/system	note	set	note="$term"	

Practical Uses
Example 2:

Dynamically importing and updating spam
filter / adware address lists for blocking.

Components:
1.  Fetch file from predefined URL
2.  Clear all entries from old address list
3.  Load line of the file as a new address

list entry
4.  Continue until reaching end of file

:local fetchsuccess true
:local content
:local contentLen
:local lineEnd 0
:local line
:local lastEnd 0
#Start file download using fetch
:do {
 /tool fetch url=http://example.com/address.txt
} on-error={
 :set fetchsuccess false
}
#Continue import if fetch succeedd
:if ($fetchsuccess) do={
 /ip firewall address-list remove [find list=IP-LIST]
 :set content [/file get [find name=address.txt] contents]
 :set contentLen [:len $content]
 :do {
 :set lineEnd [:find $content "\n" $lastEnd]
 :set line [:pick $content $lastEnd $lineEnd]
 :set lastEnd ($lineEnd + 1)
#Dont process lines with comments
 :if ([:pick $line 0 1] != "#") do={
 :local entry [:pick $line 0 ($lineEnd -1)]
 :if ([:len $entry] > 0) do={
 /ip fire address-list add list=IP-LIST addr=$entry
 }
 }
 } while ($lineEnd < $contentLen)
} else={:log info “Address list update failed – unable to
download list”}

Practical Uses
Example 3:

Updating time server daily

Script is run by a scheduler entry, will

reoccur each day and log an entry if the

process fails.

Note the “on-error” catch in case the

DNS resolution fails.

Also shown is the importable version

you could paste right into terminal to add

the scheduler entry and script.

:local	/meserver	
:do	{	
:set	/meserver	[:resolve	/me.windows.com]	
}	on-error={:set	/meserver	"failed"}	
	
:if	($/meserver	=	"failed")	do={	
:log	warning	"Warning	-	unable	to	check	or	update	/me	server"	
}	else={	
:log	info	"Successfully	updated	/me	server"	
/system	ntp	client	set	enabled=yes	primary-ntp=$/meserver	
}	
	
Importable	version:	
/system	scheduler	
add	disabled=no	interval=1d	name=UpdateTimeServer	on-event=UpdateTime	
start-date=jan/01/1970	start-/me=00:00:00	
/system	script	
add	name=UpdateTime	source=":local	/meserver\r\	
				\n:do	{\r\	
				\n:set	/meserver	[:resolve	/me.windows.com]\r\	
				\n}	on-error={:set	/meserver	\"failed\"}\r\	
				\n\r\	
				\n:if	(\$/meserver	=	\"failed\")	do={\r\	
				\n:log	warning	\"Warning	-	unable	to	check	or	update	/me	server\"\r\	
				\n}	else={\r\	
				\n:log	info	\"Successfully	updated	/me	server\"\r\	
				\n/system	ntp	client	set	enabled=yes	primary-ntp=\$/meserver\r\	
				\n}”	

Practical Uses
Example 4:

Blocks	trial	hotspot	users	ader	they	reach	a	
data	limit.	
	
This	feature	does	not	exist	in	the	standard	
hotspot	trial	user	op/ons!	
	
Schedule	to	run	every	minute,	and	clear	out	
all	user	accounts	at	midnight	or	every	24	
hours.

:local	counter	
:local	datadown	
:local	username	
:local	macaddr	
/ip	hotspot	
:foreach	counter	in=[ac7ve	find]	do={	
:set	datadown	[ac7ve	get	$counter	bytes-out]	
:if	($datadown>50000000)	do={	
:set	username	[ac7ve	get	$counter	user]	
:set	macaddr	[ac7ve	get	$counter	mac-address]	
user	remove	[find	where	name=$username]	
user	add	name=$username	limit-bytes-out=50000000	mac-add=$macaddr	
ac7ve	remove	$counter	
:log	info	"Logged	out	$username	-	Reached	50MB	download	quota"	
}}	
	
Scheduled	to	run	every	24	hours:	
/ip	hotspot	
:foreach	counter	in=[user	find]	do={user	remove	$counter}	

Troubleshooting
Errors and Gotchas

Running	configs	for	interfaces	or	items	
that	don’t	exist	(wireless	interfaces)	
	
Handling	failed	DNS	resolu/ons	
Handling	duplicate	entries	(no	duplicate	
IP’s	allowed	in	address-list)	
	
Make	liberal	use	of	:global	or	:put	
commands	for	tes/ng	new	scripts	to	
review	variables	in	play	
	
Comment	out	things	you’re	not	sure	of,	
minimise	the	tes/ng	area.	

	

Ask the room
1. What problems have you solved with scripts?

2. What’s something you’d like to solve?

3. What’s something you’re workng on?

Raise your hand if you’d like to contribute to one of these questions	

Questions?

Thanks	for	
listening!	

