N

{‘} PennyTone’

say hello.

Mikrotik Traffic control with HTB

www.pennytone.com

* David Attias
e Mikrotik Certified Trainer

* Team Member and sponsor of The Brothers Wisp

* Own Penny Tone LLC, a cloud hosted VolP and phone systems
provider

Todays Presentation is on

Traffic control with HTB

Who is this presentation for?

* [SP’s, MSP’s, Consultants, Network Engineers
* Suggested skill level: Beginner and intermediate

* Prerequisites: Network engineering & Mikrotik RouterOS
experience

* The examples in this presentation are focused on customer
networks

Topics in this presentation

* Traffic control concepts

* What is Traffic control / QoS
* Classifying traffic / mangle
* Scheduling traffic / queues

* Queue Types - scheduling vs shaping
* Shaping traffic with HTB

* Tokens - Buckets - bursting

e BurstLab

What is traffic control / QoS?

A system that:
* Regulates data flows
* Ensures sufficient though put of high priority traffic
* Promotes low latency for higher priority traffic

* How? Selectively delay or drop lower priority traffic

Important points

Important points

Important points

* We need to “tell” the Mikrotik what the total available upload
and download bandwidth for the link we are going to be traffic
shaping on.

* We can only “effectively” queue traffic that exits an interface

e Traffic control becomes effective when all available bandwidth
of a link is maxed out.

* Simplest crudest way to overcome traffic congestion problems
is to buy more bandwidth (if possible)

* Do not use Fast-Track

Three Phases of traffic control

1. Classify (marking packets)
2. Schedule (enqueuing packets)
3. Shape (dequeuing packets)

Classifying

Classifying with

Mangle

Classifying with Mangle

* Classify [“categorize” traffic with mangle

* Mangle is a RouterOS facility that marks packets for future processing

RouterOS only allows one packet mark, one connection mark and one
routing mark per packet.

The mangle facility is also used to modify some fields in the IP header, like
TOS (DSCP) and TTL fields.

Mangle rules are processed sequentially (be mindful when setting
passthough=yes dscp marking/ remarking)

It’s good practice to Mark the connection first then use the “connection
mark” to perform a “packet mark” (if possible / TCP ACK) (low CPU usage)

> ip firewall mangle
> add action=mark-connection chain=prerouting comment="web traffic" connection-

state=new dst-port=80,443 new-connection-mark=http.conn protocol=tcp

General | Advanced Extra Action Statistics

General Advanced Esxtra Action | Statistics

Chain: |prerouting ¥ Action: |mark connection
Src. Address. b gy
Dist. Address: - Log Prefix:
Protocol: 6 ftcp) v~ New Connection Mark: |http.conn
Src Por- il Fassthrough
Dst. Port: 80,443 =
Any. Port: b
In. Interface: bl
Out. Interface: -
In. Interface List: b
Out. Interface List: bl
Packet Mark: -
Connection Mark: b
Routing Mark: bl
Routing Table: bl
Connection Type: b
Connection State: invalid established related v new untracked &
Connection NAT State: -

> ip firewall mangle
> add action=mark-connection chain=forward comment="web traffic" connection-
state=new dst-port=80,443 new-connection-mark=http-connection protocol=tcp

Fiter Fules MAT Mangle | Raw Service Pots Connections = Address Lists | Layer7 Protocols

L §Ti =set Counters || 00 Reset All Counters

Action Chain Protoco .Port |Connection Mark |Connection State |Dst. Addres...|Mew Packet Mark | Passthrough |New Connectio... |Packets |Comment
mark connection prerouting 6 ftcp) 80,443 MEwW no http.conn 142 web traffic

www.pennytone.com 13

Fiter Rules MAT Mangle Faw Service Pots Connections | Address Lists Layer7 Protocols
| | Tracking

Snc. Address Dist. Address Connection Mark Timeout TCP State Orig./Repl. Rate
152 168.1.225:5062 47 176.25.165:5060 7l sip.conn :55: 0 bps/0 bps
152 .168.50.20:5060 76.74.175.70:5060 7l sip.conn 59 0 bps/0bps
1521 175:5060 -5060 7l sip.conn 59 0 bps/0 bps
152 -5060 7l sip.conn 59 0 bps/0 bps
5060 0 bps/0 bps

060 7 sip.conn
-5060 x| sip.conn 0 bps/0bps
0 bps/0 bps

-5060 7l sip.conn
0 bps/0bps
0 bps/0 bps

2060 sip.conn
0 bps/0 bps

sip.conn

itp.conn

rtp.conn 0 bps/0 bps

rtp.conn 81.6 kbps/0 bps

http.conn time wait 0 bps/0 bps

hittp.conn established 0 bps/0bps

http.conn established 0 bps/0 bps

http.conn established 0 bps/0bps

http.conn established 630.0 kbps/41.8 kbps
established 0 bps/0bps
established 0 bps/0 bps

hitp.conn
http.conn
established 0 bps/0 bps
0 bps/0 bps

http.conn
0 bps/0 bps

http.conn

http.conn
0 bps/0 bps
0 bps/0 bps

ig./Repl. Bytes
B/A14TE B
/5.6 KiB
1977 B
/1300 B
/1282 B
A1254 B
/1254 B
/1929 B
/3788 B

‘473 KiB

=11 9
[T

f\JEJI:nE—l-
mmmm

(=]

(=]
[=x]

«]
J

(=]
(4

n
-]
-]
]]

J 0o

(=]

i
=
3§
[=

(=]
]]
|

(=]
[=E R = = T |
n N in

i |
=
i R |

P I I B —
=]

3 P P P
=JRICIN R
]

n oL e En

e Jrl.

BN
el AU T

50215060
50.20:11333
50.20:11385
132.168.50.21:25018
1932.168.1.163:53006
192.168.1.
192.168.
192168,
192.168.
152.168.1.
152.168.1.
152.168.1.

oW
0O OO 00 00 00 OO 0O

o T
L LD L0 LD LD LD RD
L0 L0 L0 LD LD L el

i

=

=

[=
—_ o — — —
[g B e O e g e |

=) L0 00 L NN Oh 0D
L oy L0 L0

|
]]

-]
S =1
~ e P B B P B PO P

] Pl P P P P R P

. -l
Lad —b e Pd — BN e Ll D C0 L) Bad Gad B Bl Lad Lad

4]
TN g g N g g En
[~ R R R R i R

1y e
il
N
e]
f=2]
= @

& &&=
M mm o2

w o
=1
P 671 = P P LD e O — P] 0O D R
K,

"N

n —t -

I

i
[
L
sk
=
a3

in
G P B PRI B O RO R R R O

Fa — a3 P
=

(=]
[= e e I R T = R == T
[T D R =4

S I & R T I 6 o N e R s T e (N e e Y s Y e

o —

[e R [e g o P

~] £3 E3
3
Lad
—
hadladh
Pod Pl Pd Pl
I:IJ:-u:lu:ll
= T3 £l
@ mm

Pl 00
=
=
£t £ad

(=]
n
s R e e) P

(=]
[¥%]
=

-] O 05 0O
(= B+ BT - BT = R
Pud Pl Pl Pl
Al Bad LA Lad

o Ko g

BN Lad Lad a3 EN 6N e G0 3 (a3 01|
n

: —_
o O —i
=

e

(¥

(A=)

(=]
kN Ea Ra Bo Do oLn N G e

Pad =
=
.

(=]
Pud [l B3

[TEIN S R oE
(%]
]
n

Lo T
bl ot
b

=

L B

[T Iy

—

(=]
-l
TEBHRREE

(==)
=
e

(=]

= o 2
3

A Cad

=
o

[R
a3 Bad Lad

(%)
o = =l
o p [)
_
[=p =]
P

=
e
A Cad

=
e
o Lol Lo Gad L

()

s
3
3
3
3
3
3
=
3
E
E
E
3
s
3
=
3
s
3
3
3
3
3

A
A
A
A
A
A
A
A
A
3
S
3
A
A
A
A
A
A
A
A
A
A
A

C
C
C
C
C
C
C
C
C
Cs
C
C
C
C
C
C
C
C
C
C

P Pl P e by s
n
A
[%]
en

—_

Pod P

http.conn
http.conn

[Y R s

o o O% O
[R e T]
Pl Pod Pl Pod

(==
Pl
—
[=x 2«
ol
Pl

IP - Firewall - Connections

www.pennytone.com

> ip firewall mangle
> add action=mark-packet chain=prerouting comment="web traffic packet mark"

connection-mark=http.conn new-packet-mark=HTTP

Gereral | Advanced Extra | Action | Statistics General Advanced Extra Action | Statistics

Action: \mark packet
Src. Address:
Dist. Address: Log Prefix:

Protocal:

‘assthrough

In. Interface:

Out. Interface:

In. Interface List:

Out. Interface List:

Routing Mark:

Routing Table:
Connection Type:
Connection State:

Connection NAT State:

15

> ip firewall mangle
> add action=mark-connection chain=prerouting comment="web traffic" connection-
state=new dst-port=80,443 new-connection-mark=http-connection protocol=tcp

Filter Rules WAT Mangle | Raw Service Ports Connections Address Lists = Layer7 Protocols

ot T =zet Counters || 00 Reset All Counters
H Action Chain Protocol |Dst. Pot |Connection Mark |Connection State |Dst. Addres...|New Packet Mark | Passthrough | New Connectio... | Packets | Comment
4 mark connection prerouting 6 ftcp) 80,443 new no http .conn b traffic
1 A mark packet prerouting http.conn ' no 78 080 web traffic packet mark

www.pennytone.com 16

Firewall Of x|

Filter Fules MAT Mangle | Raw Service Ports Connections Address Lists Layer7 Protocols

L =zet Counters || oo Reset All Counters

ks

Chain Dst. Port |Connection Mark |Connection State |Dst. Addres...|Ne Mark | Passthrough | M onnectio...

prerouting (. no

prerouting } 80443 e no http.conn

prerouting http.conn no

prerouting 506 e no : P conn

prerouting & ftop) 060 e VOIp-SEnvers no sip.o P conn

prerouting sip.conn no

p outing no

forward sip.conn elate na rtp.conn

prerouting tp.conn no

postrouting no 4 816 RTP dscp mark for pac
prerouting = no management.vpn 0

prerouting management vpn MGR.Y no (0 winbox-vpn traffic packet mark
input 825 EW no winbox.conn ¢ winbox

output winbox .conn ! OX no inbox traffic packet mark
prerouting 17 (udp)) no

&
0
1
g
i
I.':

www.pennytone.com 17

Scheduling

Scheduling with
Queue

* A queue is a facility in RouterOS that process packets prior to
exiting the physical interface

* A queue is a temporary buffer that packets enter. A queue will
either drop, delay, or allow packets to pass unrestricted

* Packets that enter a queue may be organized or reorganized
based on a chosen algorithm (FiFo, SFQ, PCQ, RED) which will
dictate how they will exit the queue

* Queues must be configured with bandwidth limits

* The RouterOS queuing implementation is based on HTB

Simple Queue vs Queue Tree

Simple Queues vs Queue Tree

Simple Queues
* Processed sequentially
* Uses multiple processor cores

* Minimum requirement is "target"
and "limit"

* Can shape based on the sum total
of upload and download traffic

e Can use time conditions for when
a queue is in effect.

* Auto generated with PPPoE

Queue Trees
* All rules processed at once
* Uses one processor core

* Only configurable with packet
marks (mangle has dozens of
matchers)

Queue size & Limits

Queue size

* Queue size = How many packets a queue
can hold during congestion

Queue Type <default>

Type Name: |defauh

Kind: |pfifa

| oK

" * | Cancel

Queue Size: E pachets Aoply
Copy

Remove

Queue <download_pri_b>

e Limit-at = (CIR) Guaranteed bandwidth for the | s
Name:
queue Parent: |duwnluad ||3|
Packet Marks: 'HTTP I
CGueue Type: |pcq-dnwnluad-defaul't ||3|
.« e . . Prority: |5 |
e Max-limit = (MIR) The maximum bandwidth the | ...c. co |
queue can to pass i (200 N
Max Limit: | 30M | & bits/s
Burst Limit: | |" bits./s
Burst Threshold: | ¥ bita/s
Burst Time: | |" g

Queues will not work if max-limit is not specified

I

Why is max-limit important?

Why is max-limit so important?

a
@ Arriving Next free Nextto

* Once traffic exceeds max-limit,a pacet uffer transmit
queue can be configured to N\ — \|‘ N\
either drop or buffer packets. o —

—>

N

Free buffers Queued packets

®) A rivi
rriving Next to

packet transmit

* Once the queue’s buffer (queue L L
size) is reached, packets trying .
to enter the queue will be \D\mp
dropped (tail drop)

Policing VS Scheduling

Eate limiting
{shaper)

* Policing = once max-limit has
exceeded, packets trying to
enter this queue are dropped - = =

Traffic (kbps)
r

Traffic (kbp=)

i

mom

51 a.

Eh

~

* Scheduling = Packets that
exceed max-limit are enqueued.
When bandwidth is available
packets will dequeue

- Rate equalizing
(Scheduler)

=
> >
Tims Time

Traffie (khps)
5 g
o
Eﬂ a,
=
B n

Tratfic (kbps)

Queue Type <default>

To configure a queue to police, e ”M o
. . nd:] Cancel
Set a FIFo queuesizeto 1

Queue Size: pachets Apply

Copy

Remove

default

Queue Type <default:

To configure a queue to schedule, Type Name: |defaut [ok
Set a FiFo queue size to >1 o o [#] [cancel
Queue Size: [50 | packets | PP

Copy
Remove

Shaper VS Scheduling

Policing Scheduler
* Drops packets that exceed * Queues packets once max-
max-limit limit is exceeded

* Lower latency for packets that * Creates delay / latency

are passed

* Success rate based on priority * higher probability of packet
and properly sized limit-at delivery
values * To configure effectively,

* Better planning required to follow parent/ child limits
configure effectively rules & queue size

Queues Types

Queue Types (linux: Queue Disciplines)

* FiFo - First in First out
* SFQ - Stochastic Fairness queuing
* PCQ - Per connection queuing

* RED - Random Early Detection

FiFo = First in First out

* The same sequence inwhich First—in First—out (FIFO)
packets are enqueued, are ul §5
dequeued _4,

FIFO

BEBO

FiFo = First in First out

PFIFO

Queue Size <
PFIFO Limit

|

|

|

Queue Size> Drop I
PFIFO Limit Packet \ l
|

[

Enqueue
Packet

Check

ePb Queue
Size

© MikroTik 2011

SFQ = Stochastic Fariness Queuing

* A hashing algorithm will Stochastic Fair Queuing (SFQ)
classify traffic based on 4
identifiers, then put into
any of 1024 possible sub

e @ g3 —| Fair Quening Algorithm

o~ f“/‘ N

streams Sl off gl & S
Bl Bl E|| = &=

* De-queuing fromsub [[| | | ..

streams will happenina o a

. . E] &g 8

round robin fashion. afm|m|o ® | Time 2
_E] _ﬂ m || O H_
EEREER.

Round Robin Dequeuing Algorithm |—= 3 T §

SFQ = Stochastic Fariness Queuing

| I
| Hash |
| 0x000 |
| Hash = 4 |
Hashing 0x001 Our,I —————
_.IIJ_G Robin Aot
| Pertub Epr |
| O0x3FF |
| I
| I

© MikroTik 2011

PCQ = per connection queuing

* Similar to SFQ but addresses the
unfairness with SFQ by use of
additional flow identifier

* Speed limitations can be applied or
divided equally by number of flows

EMO|4

B zvoly
C—1 [

[B ol

MOl

b

/_;-dassiﬁerarc-addres s

/o

LVTVDE=SE300Y-2NHE

VOV 0E=SE3800Y-JHE
5101 0L=8E3800Y-JHE
0L 0i=863800Y-JHE

/ol

\

\

EV0L =S8
— NN -

0L 0k=853800Y-JNE

7

I —

\

0L 0L=S83Wa0Y-ONS
sananbgng

\

Round-robin algorithm

———

—

aoepajul 0]

PCQ = per connection queuing

PCQ

| |
I |
: FIFO 1 :
| | Grouping FIFO 2 I
FIFO
— by —<] [FFO3 >—f Total F""
| | Classifier |
| FIFO Queue szg = |
: FIFO n PCQ Total Limit :
I FIFO Queue Size = |
| PCQ Limit '
© MikroTik 2011 47

RED = Random Early Detection

* Random Early Detection is a queuing mechanism which tries to
avoid network congestion by managing the average queue size.

* It helps to prevent TCP windows from collapsing and reset back
to TCP slow start mode (or TCP Global Synchronization).

RED = Random Early Detection

RED
IN OUT

|

| ! Enqueue

| Avr < Min Thres Packet |

| Low |

| | Compute Calculate |
o Avr Min Thres <Avr & ™\ D |

Queue Avr < Min Thres p .

| P Probabili |

I High |

| |

Drop
: Avr > Max Thres Packet :

© MikroTik 2011

Shaping

Shaping with HTB

(The Mikrotik Sasquatch)

Shaping with HTB

* Shaping is act of “when” to allow a packet to exit a queue/
dequeue

* Hierarchical token bucket builds relationships between queues
(parents and children, priorities)

* Queues can be either parents or children (linux terms: innter
queues or leaf queues)

* Setting flow limits and priorities is what determines when a packet
can be dequeued.

* Each queue has a “bucket size” that hold tokens that will be used
to escort packets to it’s exit interface.

Token Bucket Filter (TBF)

iokens

D . D H T I 3 I |
Tokens | iy
g
=

Tokens ~%
¥

* A packet can not dequeue without |
being escorted by a token s s

i of instantaneously

o o | available tokens
* 1token can dequeue one 1KB of ==
traffic jofla]_ |

packets
transmitted
at rate

HON

* Root parent queue is where token
generation happens

token
available

o

* Tokens are issued at root parent’s
max-limit rate

Wait until
tokenis) are
availahle.

Hierarchy

HTB = Hierarchical Token Bucket

* Hierarchy = Queues are configured
in a hierarchy. Parent and child
gueues establish a “give and take
relationship” for distributing and

| MName / | Parent | Packet Marks
1 H i= download bridgedocal
. . 2 download_pri_2 download RTP
p riori ty 2 download_pri_3 download SIP
2 download_pri_ 4 download MGE.WPM
. . 2 download_pri_5 download HTTP
® T h e H lerarc hy WO rks InNnone 2 download pri_8 download no-mark
& upload etherl-gateway
M : HP - 12 upload_pri_1 upload TCP.ACK
direction and is implemented on e —fpoac L
. 8 upload_pri_3 upload SIP
outbound interface Bupload pri 4 upload MGR. VPN
2 upload_pri 5 upload HTTP
2 upload_pri_8 upload no-mark

Hierarchical Token Bucket

Parent and Child queues

Hierarchical Token Bucket

Parent Queue Child Queue

 Distribute bandwidth (tokens) * Consume bandwidth / Spend
tokens

* Priority is ignored
* Priority dictates the order in

* Parents will first satisfy the child) o
which remaining tokens are

gueue's “limit-at” value then try

and reach child “max-limit” in given
priority order * 8is the lowest priority, 1 is the
highest

* prioritization will work only if
limits are specified

I

HTB bandwidth distribution:

Simple Queues Interface Queues Gueue Tree | Queue Types

e |==| o 8 O T 00 ResetCounters | 00 Reset All Cou

. . . Mame Packet Marks |Priorty| Bucket Size JLimi

The sum of children’s limit-at values & download . s

should not exceed their parents ‘max- 2 download_pri_1 TCP.ACK 0.100

imit’ 1= download_pri_?2 RTP 0.100

llmlt Value EE_E‘:E|:||:l'r'v.'r|||:l-E||:|J:|ri_E! SIP 0 100

.::'-. download J:lri_i MGRE VPN 0 100

i imi = download pri 5 ! 0,100
Child’s max-limit should not exceed the it download_pri 5 HTTF

parents max-limit

The parent will satisfy the children’s Limit-

at values first, then any remaining
bandwidth is distributed by priority to

satisfy the max-limit values of each child

queue.

& download pri_ 8 no-mark
2 upload

12 upload_pri_1 TCP.ACK

S upload_pri_ 2 RTP

12 upload_pri_3 SIP

12 upload_pri_4 MGR.VPN

12 upload_pri_5 HTTP

12 upload_pri_8 no-mark

I -Il'll'l
(SR S
in -Iﬂﬂ
. i
in nin
(SN R SR

in -Iﬂﬂ
. i
I -Il'll'l
(SN R SR
i g9y’
(SR S

in nin
(SN SR

1
7
4
F:
]
1
2
3
4
r:

Queue colors in Winbox:
0% - 50% of max-limit - green

51% - 75% of max-limit - yellow
76% - 100% of max-limit - red

www.pennytone.com 45

Queue settings

Check to verify config is correct: (Maximi=ioM)

v Max-limits do not exceed the

parent max-limit

v Sum of child queue limit-at’s do
not exceed the parents max-limit

* Child limit-at will be satisfied

* 3 child queues x 2M = 6M

* 10M (max-limit) -6M =4Mto

distribute by priority

"Queue01"
parent=Local-interface

Limit-at=4M
Max-limit=10M

"Queue02"
parent=Queue01

Limit-at=2M
Max-limit=10M
Priarity=1

Limit-at=2M
Max-limit=10M
Priority=3

Limit-at=2M
Max-limit=10M
Priority=5

"Queue03" "Queued4" "Queuel5s”
parent=Queue01 parent=Queue02 parent=Queue02

* Queue04 has highest priority so
remaining bandwidth will be

offered to queue04 first

* Queue04 gets 6M total

Buckets

* A Bucket’s purpose is to facilitate bursting

* “Bursting” is when traffic is allowed to exceed max-limit for a
limited amount of transfer or time

* When traffic flow is less than max-limit, the bucket will fill with
tokens

* A full bucket will allow bursting at an unrestricted speed, until
the bucket is empty.

* If a child queue requests bandwidth from a parent queue who
has a full bucket, The parent will release all tokens at once,
allowing the child to burst

Bucket capacity

* Queues are configured with buckets that hold tokens (how
many)

* max-limit x bucket size = bucket capacity

* Bucket capacity dictates data transfer. NOT FLOW or
BANDWIDTH!

* All children are limited to the parents token supply

HTB LAB

Lab 1

Demonstrate a full bucket burst from a queue without any children

HTB LAB

NAS drive

Mikrotik
1Gb link

ether5 etherl

1Gb link

Queues set on ether5

HTB LAB

* Max-limit =10Mbps
* Bucket size =10

* Bucket capacity = bucket is set to burst 100Mb OF
DATA TRANSFER!!!

Target = ether5

Simple Queue <Big bucket>

General | Advanced Statistics Traffic Total Total Statistics

o

Mame: | | Cancel |

Target: |ether5 B | Apply |

Dst: | g | Disable |

Target Upload Target Download | Comment |

Masx Limit: [10M =] [1om []bitsss | | Copy |

—aa— Burst | Remove |

Burst Limit: |un|im'rted || ¥ | |ur1|im'rted |! * | bits/s | Rt e |

Burst Threshold: |unlimited |# | |unlimited | % | bits/a | e A ot |
Burst Time: |ﬂ | |D | 5

Sy | Toch |

enabled

Max-limit=10M

Bucket size =10

Simp'= Gueue <burst_child:

Advanced | Statistics Traffic Total Total Statistics

| |
| |
| |
| Disabe |
| |
| |
| |

Femove

| Reset Counters |

Packet Marks: |3 KR
Target Upload Target Download
Lirnit Af: |ur1|im'rted " + | |unlimited |i;| bits./z
. Priorty: |8 HE |
Bucket is set to burst 100Mb | & oo e
Of DATA T RAN S FE R as fa St as Queue Type: |default-small |# | |defautt-small ¥ |
. arent: | _ [E3
possible P
enabled

| Reset All Courters |

| Towchi |

Simple Queue <Big bucket

Gerersl Advanced Statistics Traffic | Total Total Statistics or

Target Upload Tanget Download Cancel

Rate: [9.5 Mbps | [146.0kbps | Apply
Packet Rate: | 799p/s | |"13'5 p/s i

Disable

Comment
Max-limit=10M =
Remove
Bucket size=10 Srrme Reset Courter
] et O O O B O R [|- LBeset A G
Bucket capacity = 100Mb of i
data transfer
. _ . Bl Upload Packets: 799p/s
268MB file = 2,248,146,944 bits o i O I I O P R
Bucket size = 104,857,760 p—

2,248,146,944 - 104,857,760 = 2,143,289,184
2,143,289,184 / 10Mbps (10,485,760) = 204.4 seconds
204.4 seconds / 60 minutes = (3.41) 3:25 minutes + 1 second (from burst of 100Mb)
3:26 minutes for total file transfer
210 seconds / 60 =3:30
IStatus: File transfer successful, transferred 268,435,456 bytes in 210 seconds

I

HTB LAB

Lab

Demonstrate a burst from a child queue with a large bucket and
it’s parent with a very small bucket

Penny Tone LLC copyright 2019
Exit interface

A

Is there a
parent? NO

» Dump tokens

o No //Excess\\
max-limt <«——~_ tokens >
\i\n bucket/?/

N

Yes

Is there a No
parent?

TYes

N
No /,f" Excess \\
max-limit «————_ tokens >
\'LIJ\ bucket?”
\\ﬁ//

» Dump tokens

HTB LAB

Cueue List

Parent queue: _
Simple Gueues | Inteface Queues Queue Tree Queue Types
Ta rget = ethers || = ||| 82 T | | 00 Resst Counters || 00 Reset All Counters Find
.. # | |Name ¢ | Target | Upload Max Limit | Download Max Limit | Packet Marks|Bucket Size| ¥
Max-limit=20M 0D @burst parent 20M ether5 20M 20M FIP 0.100
1 Bburst_child ethers 10M 10M FTP 10.000
Bucket Size=.1
‘. | »
2 items 0B queued [packets queued

Child Queue:

Target = ether5

Max-limit=10M

Bucket Size =10

Bucket capacity is set for 100Mb data transfer as fast as possible

HTB LAB

Simple Queue <burst_child>

General Advanced Statistics Traffic | Total Total Statistics OK
Target Upload Target Download Cancel
Rate: |11.0 Mbps | [Obps | Apply
Packet Rate: 923 p/s | [0p/s | TR
Comment
Copy
Remove
Reset Counters
B Upload: 11.0 Mbps ‘ ‘ Reset Al Counters
Bl Download: Obps Tarch

B Upload Packets: 523p/s
Bl Download Packets: Op.s

\enabled

HTB LAB

° Simple Queue <burst_child>
Chlld queue haS d fuu General Advanced Statisics Traffic | Total Total Statistics oK
b u C ket Target Upload Target Download Cancel
Rate: |11.0 Mbps | |Dbps | Apply
The parent has empty Packet Rate: (323015 | [opse | e
b u C ket Comment
° [} Eﬂw
Child bucket is set to burst Remove
= Upload: 11.0 Mbpz Reset Al Counters
o . o Download: 0 bps
But is limited to parents : Torch

max-limit of 20Mbps

has completed, data S

Bl Download Packets: Op.s

After 100Mb of data transfer M

transfer rate returns to non
bursting of child’s max limit

|enabled

Penny Tone LLC copyright 2019
Exit interface

A

Is there a
parent? NO

» Dump tokens

o No //Excess\\
max-limt <«——~_ tokens >
\i\n bucket/?/

N

Yes

Is there a No
parent?

TYes

N
No /,f" Excess \\
max-limit «————_ tokens >
\'LIJ\ bucket?”
\\ﬁ//

» Dump tokens

We’ve learned about:

* Mangle

* Queuing

* Simple queues vs Queue trees

* Policing vs Scheduling

* Hierarchial Token Bucket (The Mikrotik Sasquatch)
* Bursting with buckets

Thank you’z

* The Brothers WISP / Greg Sowell

* Justin Miller - Why not to burst netflix traffic

* Nick “spock” Arellano - Telling me when I’m wrong
* Rick Frey - Token bucket theory

* Janis Megis - Token bucket theory

* Tommy “C” - Help with flow chart

* My wife and kid - being supportive and help me recharge

References

http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm
https://www.net.t-labs.tu-berlin.de/teaching/computer_networking/06.06.htm
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html
http://linux-ip.net/articles/Traffic-Control-HOWTO/

https://wiki.mikrotik.com/wiki/Manual:HTB

https://lartc.org/howto/lartc.qdisc.html

https://lartc.org/howto/lartc.qdisc.classless.htmI#AEN691
https://wiki.debian.org/TrafficControl#Queueing_Disciplines
https://www.youtube.com/watch?v=dSEEwHCvOnA

https://www.youtube.com/watch?v=IXWQ3t70L1Y

http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm
https://www.net.t-labs.tu-berlin.de/teaching/computer_networking/06.06.htm
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html
http://linux-ip.net/articles/Traffic-Control-HOWTO/
https://wiki.mikrotik.com/wiki/Manual:HTB
https://lartc.org/howto/lartc.qdisc.html
https://lartc.org/howto/lartc.qdisc.classless.html#AEN691
https://wiki.debian.org/TrafficControl#Queueing_Disciplines
https://www.youtube.com/watch?v=dSEEwHCvOnA
https://www.youtube.com/watch?v=lXWQ3t7OL1Y

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

