
www.pennytone.com1

Mikrotik Traffic control with HTB

www.pennytone.com2

Who Am I

● David Attias
● Mikrotik Certified Trainer
● Team Member and sponsor of The Brothers Wisp
● Own Penny Tone LLC, a cloud hosted VoIP and phone systems

provider

www.pennytone.com3

Todays Presentation is on

Traffic control with HTB

www.pennytone.com4

Who is this presentation for?

● ISP’s, MSP’s, Consultants, Network Engineers
● Suggested skill level: Beginner and intermediate
● Prerequisites: Network engineering & Mikrotik RouterOS

 experience
● The examples in this presentation are focused on customer

networks

www.pennytone.com5

Topics in this presentation

● Traffic control concepts
● What is Traffic control / QoS
● Classifying traffic / mangle
● Scheduling traffic / queues

● Queue Types - scheduling vs shaping

● Shaping traffic with HTB
● Tokens – Buckets – bursting
● Burst Lab

www.pennytone.com6

What is traffic control / QoS?

A system that:
● Regulates data flows
● Ensures sufficient though put of high priority traffic
● Promotes low latency for higher priority traffic
● How? Selectively delay or drop lower priority traffic

www.pennytone.com7

Important points

Important points

www.pennytone.com8

Important points

● We need to “tell” the Mikrotik what the total available upload
and download bandwidth for the link we are going to be traffic
shaping on.

● We can only “effectively” queue traffic that exits an interface
● Traffic control becomes effective when all available bandwidth

of a link is maxed out.
● Simplest crudest way to overcome traffic congestion problems

is to buy more bandwidth (if possible)
● Do not use Fast-Track

www.pennytone.com9

Three Phases of traffic control

1. Classify (marking packets)

2. Schedule (enqueuing packets)

3. Shape (dequeuing packets)

www.pennytone.com10

 Classifying

Classifying with
Mangle

www.pennytone.com11

Classifying with Mangle

● Classify / “categorize” traffic with mangle
● Mangle is a RouterOS facility that marks packets for future processing
● RouterOS only allows one packet mark, one connection mark and one

routing mark per packet.
● The mangle facility is also used to modify some fields in the IP header, like

TOS (DSCP) and TTL fields.
● Mangle rules are processed sequentially (be mindful when setting

passthough=yes dscp marking/ remarking)
● It’s good practice to Mark the connection first then use the “connection

mark” to perform a “packet mark” (if possible / TCP ACK) (low CPU usage)

www.pennytone.com 12

> ip firewall mangle
> add action=mark-connection chain=prerouting comment="web traffic" connection-
state=new dst-port=80,443 new-connection-mark=http.conn protocol=tcp

www.pennytone.com 13

> ip firewall mangle
> add action=mark-connection chain=forward comment="web traffic" connection-
state=new dst-port=80,443 new-connection-mark=http-connection protocol=tcp

www.pennytone.com 14

IP → Firewall → Connections

www.pennytone.com 15

> ip firewall mangle
> add action=mark-packet chain=prerouting comment="web traffic packet mark"
connection-mark=http.conn new-packet-mark=HTTP

www.pennytone.com 16

> ip firewall mangle
> add action=mark-connection chain=prerouting comment="web traffic" connection-
state=new dst-port=80,443 new-connection-mark=http-connection protocol=tcp

www.pennytone.com 17

www.pennytone.com18

 Scheduling

Scheduling with
Queue

www.pennytone.com19

Queues

● A queue is a facility in RouterOS that process packets prior to
exiting the physical interface

● A queue is a temporary buffer that packets enter. A queue will
either drop, delay, or allow packets to pass unrestricted

● Packets that enter a queue may be organized or reorganized
based on a chosen algorithm (FiFo, SFQ, PCQ, RED) which will
dictate how they will exit the queue

● Queues must be configured with bandwidth limits
● The RouterOS queuing implementation is based on HTB

www.pennytone.com20

Simple Queue vs Queue Tree

www.pennytone.com21

 Simple Queues vs Queue Tree

Simple Queues
● Processed sequentially
● Uses multiple processor cores
● Minimum requirement is "target"

and "limit"
● Can shape based on the sum total

of upload and download traffic
● Can use time conditions for when

a queue is in effect.
● Auto generated with PPPoE

Queue Trees
● All rules processed at once
● Uses one processor core
● Only configurable with packet

marks (mangle has dozens of
matchers)

www.pennytone.com22

Queue size & Limits

www.pennytone.com23

Queue size

● Queue size = How many packets a queue
 can hold during congestion

www.pennytone.com24

Limits

● Limit-at = (CIR) Guaranteed bandwidth for the
 queue

● Max-limit = (MIR) The maximum bandwidth the
 queue can to pass

Queues will not work if max-limit is not specified

www.pennytone.com25

Why is max-limit important?

www.pennytone.com26

Why is max-limit so important?

● Once traffic exceeds max-limit, a
queue can be configured to
either drop or buffer packets.

● Once the queue’s buffer (queue
size) is reached, packets trying
to enter the queue will be
dropped (tail drop)

www.pennytone.com27

Policing VS Scheduling

● Policing = once max-limit has
exceeded, packets trying to
enter this queue are dropped

● Scheduling = Packets that
exceed max-limit are enqueued.
When bandwidth is available
packets will dequeue

www.pennytone.com28

To configure a queue to police,
Set a FiFo queue size to 1

To configure a queue to schedule,
Set a FiFo queue size to >1

www.pennytone.com29

Shaper VS Scheduling

Scheduler
● Queues packets once max-

limit is exceeded
● Creates delay / latency

● higher probability of packet
delivery

● To configure effectively,
follow parent / child limits
rules & queue size

Policing
● Drops packets that exceed

max-limit
● Lower latency for packets that

are passed
● Success rate based on priority

and properly sized limit-at
values

● Better planning required to
configure effectively

www.pennytone.com30

Queues Types

Queue Types (linux: Queue Disciplines)

● FiFo – First in First out
● SFQ – Stochastic Fairness queuing
● PCQ – Per connection queuing
● RED – Random Early Detection

www.pennytone.com31

FiFo = First in First out

● The same sequence in which
packets are enqueued, are
dequeued

www.pennytone.com32

FiFo = First in First out

www.pennytone.com33

SFQ = Stochastic Fariness Queuing

● A hashing algorithm will
classify traffic based on 4
identifiers, then put into
any of 1024 possible sub
streams

● De-queuing from sub
streams will happen in a
round robin fashion.

www.pennytone.com34

SFQ = Stochastic Fariness Queuing

www.pennytone.com35

PCQ = per connection queuing

● Similar to SFQ but addresses the
unfairness with SFQ by use of
additional flow identifier

● Speed limitations can be applied or
divided equally by number of flows

www.pennytone.com36

PCQ = per connection queuing

www.pennytone.com37

RED = Random Early Detection

● Random Early Detection is a queuing mechanism which tries to
avoid network congestion by managing the average queue size.

● It helps to prevent TCP windows from collapsing and reset back
to TCP slow start mode (or TCP Global Synchronization).

www.pennytone.com38

RED = Random Early Detection

www.pennytone.com39

 Shaping

Shaping with HTB
(The Mikrotik Sasquatch)

www.pennytone.com40

Shaping with HTB

● Shaping is act of “when” to allow a packet to exit a queue /
dequeue

● Hierarchical token bucket builds relationships between queues
(parents and children, priorities)

● Queues can be either parents or children (linux terms: innter
queues or leaf queues)

● Setting flow limits and priorities is what determines when a packet
can be dequeued.

● Each queue has a “bucket size” that hold tokens that will be used
to escort packets to it’s exit interface.

www.pennytone.com41

Tokens

Tokens
● A packet can not dequeue without

being escorted by a token
● 1 token can dequeue one 1KB of

traffic
● Root parent queue is where token

generation happens
● Tokens are issued at root parent’s

max-limit rate

www.pennytone.com42

Hierarchy

HTB = Hierarchical Token Bucket
● Hierarchy = Queues are configured

in a hierarchy. Parent and child
queues establish a “give and take
relationship” for distributing and
consuming bandwidth based on
priority

● The Hierarchy works in one
direction and is implemented on
outbound interface

www.pennytone.com43

Hierarchical Token Bucket

 Parent and Child queues

www.pennytone.com44

Hierarchical Token Bucket

Parent Queue
● Distribute bandwidth (tokens)
● Priority is ignored
● Parents will first satisfy the child

queue's “limit-at” value then try
and reach child “max-limit” in
priority order

Child Queue
● Consume bandwidth / Spend

tokens
● Priority dictates the order in

which remaining tokens are
given

● 8 is the lowest priority, 1 is the
highest

● prioritization will work only if
limits are specified

www.pennytone.com 45

HTB bandwidth distribution:

● The sum of children’s limit-at values
should not exceed their parents ‘max-
limit’ value

● Child’s max-limit should not exceed the
parents max-limit

● The parent will satisfy the children’s Limit-
at values first, then any remaining
bandwidth is distributed by priority to
satisfy the max-limit values of each child
queue.

Queue colors in Winbox:

0% - 50% of max-limit – green
51% - 75% of max-limit – yellow
76% - 100% of max-limit - red

www.pennytone.com46

Queue settings

Check to verify config is correct:

✔ Max-limits do not exceed the
parent max-limit

✔ Sum of child queue limit-at’s do
not exceed the parents max-limit

● Child limit-at will be satisfied

● 3 child queues x 2M = 6M

● 10M (max-limit) – 6M = 4M to
distribute by priority

● Queue04 has highest priority so
remaining bandwidth will be
offered to queue04 first

● Queue04 gets 6M total

www.pennytone.com47

Buckets

 Buckets

www.pennytone.com48

Buckets

● A Bucket’s purpose is to facilitate bursting
● “Bursting” is when traffic is allowed to exceed max-limit for a

limited amount of transfer or time
● When traffic flow is less than max-limit, the bucket will fill with

tokens
● A full bucket will allow bursting at an unrestricted speed, until

the bucket is empty.
● If a child queue requests bandwidth from a parent queue who

has a full bucket, The parent will release all tokens at once,
allowing the child to burst

www.pennytone.com49

Bucket capacity

● Queues are configured with buckets that hold tokens (how
many)

● max-limit x bucket size = bucket capacity
● Bucket capacity dictates data transfer. NOT FLOW or

BANDWIDTH!
● All children are limited to the parents token supply

www.pennytone.com50

HTB LAB

Lab 1

Demonstrate a full bucket burst from a queue without any children

www.pennytone.com51

HTB LAB

NAS drive

ether5 ether1

Mikrotik

PC

Queues set on ether5

1Gb link

1Gb link

www.pennytone.com52

HTB LAB

● Max-limit = 10Mbps
● Bucket size = 10
● Bucket capacity = bucket is set to burst 100Mb OF

DATA TRANSFER!!!

www.pennytone.com53

HTB LAB

Target = ether5

Max-limit = 10M

Bucket size = 10

Bucket is set to burst 100Mb
of DATA TRANSFER as fast as
possible

General

advanced

www.pennytone.com54

HTB LAB

268MB file = 2,248,146,944 bits

Bucket size = 104,857,760

2,248,146,944 – 104,857,760 = 2,143,289,184

2,143,289,184 / 10Mbps (10,485,760) = 204.4 seconds

204.4 seconds / 60 minutes = (3.41) 3:25 minutes + 1 second (from burst of 100Mb)

3:26 minutes for total file transfer

210 seconds / 60 = 3:30

Max-limit = 10M

Bucket size = 10

Bucket capacity = 100Mb of
data transfer

www.pennytone.com55

HTB LAB

Lab

Demonstrate a burst from a child queue with a large bucket and
it’s parent with a very small bucket

www.pennytone.com57

HTB LAB

Parent queue:

Target = ether5
Max-limit = 20M
Bucket Size = .1

Child Queue:

Target = ether5
Max-limit = 10M
Bucket Size = 10
Bucket capacity is set for 100Mb data transfer as fast as possible

www.pennytone.com58

HTB LAB

www.pennytone.com59

HTB LAB

Child queue has a full
bucket

The parent has empty
bucket

Child bucket is set to burst
100Mb of data transfer

But is limited to parents
max-limit of 20Mbps

After 100Mb of data transfer
has completed, data
transfer rate returns to non
bursting of child’s max limit

60

www.pennytone.com61

Conclusion

We’ve learned about:
● Mangle
● Queuing
● Simple queues vs Queue trees
● Policing vs Scheduling
● Hierarchial Token Bucket (The Mikrotik Sasquatch)
● Bursting with buckets

www.pennytone.com62

Thank you’z

● The Brothers WISP / Greg Sowell
● Justin Miller – Why not to burst netflix traffic
● Nick “spock” Arellano – Telling me when I’m wrong
● Rick Frey – Token bucket theory
● Janis Megis - Token bucket theory
● Tommy “C” – Help with flow chart
● My wife and kid – being supportive and help me recharge

www.pennytone.com63

References

http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm

https://www.net.t-labs.tu-berlin.de/teaching/computer_networking/06.06.htm

https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html

http://linux-ip.net/articles/Traffic-Control-HOWTO/

https://wiki.mikrotik.com/wiki/Manual:HTB

https://lartc.org/howto/lartc.qdisc.html

https://lartc.org/howto/lartc.qdisc.classless.html#AEN691

https://wiki.debian.org/TrafficControl#Queueing_Disciplines

https://www.youtube.com/watch?v=dSEEwHCvOnA

https://www.youtube.com/watch?v=lXWQ3t7OL1Y

http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm
https://www.net.t-labs.tu-berlin.de/teaching/computer_networking/06.06.htm
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html
http://linux-ip.net/articles/Traffic-Control-HOWTO/
https://wiki.mikrotik.com/wiki/Manual:HTB
https://lartc.org/howto/lartc.qdisc.html
https://lartc.org/howto/lartc.qdisc.classless.html#AEN691
https://wiki.debian.org/TrafficControl#Queueing_Disciplines
https://www.youtube.com/watch?v=dSEEwHCvOnA
https://www.youtube.com/watch?v=lXWQ3t7OL1Y

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

