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Mikrotik Traffic control with HTB
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Who Am I

● David Attias 
● Mikrotik Certified Trainer
● Team Member and sponsor of The Brothers Wisp 
● Own Penny Tone LLC,  a cloud hosted VoIP and phone systems 

provider



www.pennytone.com3

Todays Presentation is on

Traffic control with HTB
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Who is this presentation for?

● ISP’s, MSP’s, Consultants, Network Engineers
● Suggested skill level: Beginner and intermediate 
● Prerequisites: Network engineering & Mikrotik RouterOS      

 experience
● The examples in this presentation are focused on customer 

networks
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Topics in this presentation 

● Traffic control concepts
● What is Traffic control / QoS
● Classifying traffic / mangle
● Scheduling traffic / queues

● Queue Types - scheduling vs shaping

● Shaping traffic with HTB
● Tokens – Buckets – bursting
● Burst Lab 
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What is traffic control / QoS? 

A system that:
● Regulates data flows
● Ensures sufficient though put of high priority traffic 
● Promotes low latency for higher priority traffic 
● How? Selectively delay or drop lower priority traffic 
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Important points 

Important points
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Important points 

● We need to “tell” the Mikrotik what the total available upload 
and download bandwidth for the link we are going to be traffic 
shaping on.

● We can only “effectively” queue traffic that exits an interface
● Traffic control becomes effective when all available bandwidth 

of a link is maxed out.
● Simplest crudest way to overcome traffic congestion problems 

is to buy more bandwidth (if possible)
● Do not use Fast-Track
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Three Phases of traffic control

1. Classify (marking packets)

2. Schedule (enqueuing packets)

3. Shape (dequeuing packets)
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    Classifying

Classifying with 
Mangle
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Classifying with Mangle

● Classify / “categorize” traffic with mangle
● Mangle is a RouterOS facility that marks packets for future processing
● RouterOS only allows one packet mark, one connection mark and one 

routing mark per packet.
● The mangle facility is also used to modify some fields in the IP header, like 

TOS (DSCP) and TTL fields.
● Mangle rules are processed sequentially (be mindful when setting 

passthough=yes dscp marking/ remarking)
● It’s good practice to Mark the connection first then use the “connection 

mark” to perform a “packet mark” (if possible / TCP ACK) (low CPU usage)
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> ip firewall mangle
> add action=mark-connection chain=prerouting comment="web traffic" connection-
state=new dst-port=80,443 new-connection-mark=http.conn protocol=tcp
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> ip firewall mangle
> add action=mark-connection chain=forward comment="web traffic" connection-
state=new dst-port=80,443 new-connection-mark=http-connection protocol=tcp
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IP → Firewall → Connections
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> ip firewall mangle
> add action=mark-packet chain=prerouting comment="web traffic packet mark" 
connection-mark=http.conn new-packet-mark=HTTP
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> ip firewall mangle
> add action=mark-connection chain=prerouting comment="web traffic" connection-
state=new dst-port=80,443 new-connection-mark=http-connection protocol=tcp
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           Scheduling

Scheduling with 
Queue
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Queues

● A queue is a facility in RouterOS that process packets prior to 
exiting the physical interface

● A queue is a temporary buffer that packets enter. A queue will 
either drop, delay, or allow packets to pass unrestricted

● Packets that enter a queue may be organized or reorganized 
based on a chosen algorithm (FiFo, SFQ, PCQ, RED) which will 
dictate how they will exit the queue

● Queues must be configured with bandwidth limits
● The RouterOS queuing implementation is based on HTB
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Simple Queue vs Queue Tree
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   Simple Queues vs Queue Tree

Simple Queues
● Processed sequentially
● Uses multiple processor cores
● Minimum requirement is "target" 

and "limit"
● Can shape based on the sum total 

of upload and download traffic
● Can use time conditions for when 

a queue is in effect.
● Auto generated with PPPoE

Queue Trees
● All rules processed at once
● Uses one processor core
● Only configurable with packet 

marks (mangle has dozens of 
matchers)
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Queue size & Limits
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Queue size

● Queue size = How many packets a queue 
      can hold during congestion
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Limits

● Limit-at = (CIR) Guaranteed bandwidth for the 
 queue

● Max-limit = (MIR) The maximum bandwidth the 
    queue can to pass

Queues will not work if max-limit is not specified
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Why is max-limit important?
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Why is max-limit so important?

● Once traffic exceeds max-limit, a 
queue can be configured to 
either drop or buffer packets.

● Once the queue’s buffer (queue 
size) is reached, packets trying 
to enter the queue will be 
dropped (tail drop) 
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Policing VS Scheduling

● Policing = once max-limit has 
exceeded, packets trying to 
enter this queue are dropped

● Scheduling = Packets that 
exceed max-limit are enqueued. 
When bandwidth is available 
packets will dequeue
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To configure a queue to police, 
Set a FiFo queue size to 1

To configure a queue to schedule, 
Set a FiFo queue size to >1
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Shaper VS Scheduling

Scheduler
● Queues packets once  max-

limit is exceeded
● Creates delay / latency

● higher probability of packet 
delivery

● To configure effectively, 
follow  parent / child limits 
rules & queue size

Policing 
● Drops packets that exceed 

max-limit
● Lower latency for packets that 

are passed
● Success rate based on priority 

and properly sized limit-at 
values

● Better planning required to 
configure effectively 
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Queues Types

Queue Types (linux: Queue Disciplines)

● FiFo – First in First out
● SFQ – Stochastic Fairness queuing
● PCQ – Per connection queuing
● RED – Random Early Detection
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FiFo = First in First out

● The same sequence in which 
packets are enqueued, are 
dequeued
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FiFo = First in First out
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SFQ = Stochastic Fariness Queuing

●  A hashing algorithm will 
classify traffic based on 4 
identifiers, then put into 
any of 1024 possible sub 
streams

● De-queuing from sub 
streams will happen in a 
round robin fashion.
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SFQ = Stochastic Fariness Queuing
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PCQ = per connection queuing

● Similar to SFQ but addresses the 
unfairness with SFQ by use of 
additional flow identifier

● Speed limitations can be applied or 
divided equally by number of flows 
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PCQ = per connection queuing
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RED = Random Early Detection

● Random Early Detection is a queuing mechanism which tries to 
avoid network congestion by managing the average queue size.

● It helps to prevent TCP windows from collapsing and reset back 
to TCP slow start mode (or TCP Global Synchronization).
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RED = Random Early Detection
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           Shaping

Shaping with HTB
(The Mikrotik Sasquatch)



www.pennytone.com40

Shaping with HTB

● Shaping is act of “when” to allow a packet to exit a queue / 
dequeue

● Hierarchical token bucket builds relationships between queues 
(parents and children, priorities) 

● Queues can be either parents or children (linux terms: innter 
queues or leaf queues)

● Setting flow limits and priorities is what determines when a packet 
can be dequeued.

● Each queue has a “bucket size” that hold tokens that will be used 
to escort packets to it’s exit interface.
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Tokens

Tokens
● A packet can not dequeue without 

being escorted by a token
● 1 token can dequeue one 1KB of 

traffic
● Root parent queue is where token 

generation happens
● Tokens are issued at root parent’s 

max-limit rate
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Hierarchy

HTB = Hierarchical Token Bucket
● Hierarchy = Queues are configured 

in a hierarchy. Parent and child 
queues establish a “give and take 
relationship” for distributing and 
consuming bandwidth based on 
priority

● The Hierarchy works in one 
direction and is implemented on 
outbound interface
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Hierarchical Token Bucket

 Parent and Child queues
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Hierarchical Token Bucket

Parent Queue
● Distribute bandwidth (tokens)
● Priority is ignored
● Parents will first satisfy the child 

queue's “limit-at” value then try 
and reach child “max-limit” in 
priority order

Child Queue
● Consume bandwidth / Spend 

tokens
● Priority dictates the order in 

which remaining tokens are 
given

● 8 is the lowest priority, 1 is the 
highest

● prioritization will work only if 
limits are specified
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HTB bandwidth distribution:

● The sum of children’s limit-at  values  
should not exceed their parents ‘max-
limit’ value

● Child’s max-limit should not exceed the 
parents max-limit

● The parent will satisfy the children’s Limit-
at values first, then any remaining 
bandwidth is distributed by priority to 
satisfy the max-limit values of each child 
queue. 

Queue colors in Winbox: 

0% - 50% of max-limit – green
51% - 75%  of max-limit – yellow
76% - 100%  of max-limit - red 
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Queue settings

Check to verify config is correct:

✔ Max-limits do not exceed the 
parent max-limit

✔ Sum of child queue limit-at’s do 
not exceed the parents max-limit

● Child limit-at will be satisfied 

● 3 child queues x 2M = 6M

● 10M (max-limit) – 6M = 4M to 
distribute by priority

● Queue04 has highest priority so 
remaining bandwidth will be 
offered to queue04 first

● Queue04 gets 6M total
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Buckets

 Buckets
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Buckets

● A Bucket’s purpose is to facilitate bursting
● “Bursting” is when traffic is allowed to exceed max-limit for a 

limited amount of transfer or time
● When traffic flow is less than max-limit, the bucket will fill with 

tokens
● A full bucket will allow bursting at an unrestricted speed, until 

the bucket is empty. 
● If a child queue requests bandwidth from a parent queue who 

has a full bucket, The parent will release all tokens at once, 
allowing the child to burst
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Bucket capacity

● Queues are configured with buckets that hold tokens (how 
many)

● max-limit  x  bucket size  =  bucket capacity
● Bucket capacity dictates data transfer. NOT FLOW or 

BANDWIDTH!
● All children are limited to the parents token supply
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HTB LAB

Lab 1

Demonstrate a full bucket burst from a queue without any children 
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HTB LAB

NAS drive 

ether5 ether1

Mikrotik

PC 

Queues set on ether5

1Gb link

1Gb link
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HTB LAB

● Max-limit = 10Mbps
● Bucket size = 10
● Bucket capacity = bucket is set to burst 100Mb OF 

DATA TRANSFER!!!
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HTB LAB

 

Target = ether5

Max-limit = 10M

Bucket size = 10

Bucket is set to burst 100Mb 
of DATA TRANSFER as fast as 
possible

General

advanced
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HTB LAB

268MB file = 2,248,146,944 bits

Bucket size = 104,857,760

2,248,146,944 – 104,857,760 = 2,143,289,184

2,143,289,184 / 10Mbps (10,485,760) = 204.4 seconds 

204.4 seconds / 60 minutes = (3.41) 3:25 minutes + 1 second (from burst of 100Mb) 

3:26 minutes for total file transfer

210 seconds / 60 = 3:30

Max-limit = 10M

Bucket size = 10

Bucket capacity = 100Mb of
data transfer



www.pennytone.com55

HTB LAB

Lab 

Demonstrate a burst from a child queue with a large bucket and 
it’s parent with a very small bucket
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HTB LAB

Parent queue:

Target = ether5
Max-limit = 20M
Bucket Size = .1

Child Queue:

Target = ether5 
Max-limit = 10M 
Bucket Size = 10
Bucket capacity is set for 100Mb data transfer as fast as possible
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HTB LAB
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HTB LAB

Child queue has a full 
bucket 

The parent has empty 
bucket

Child bucket is set to burst 
100Mb of data transfer

But is limited to parents 
max-limit of 20Mbps

After 100Mb of data transfer 
has completed, data 
transfer rate returns to non 
bursting of child’s max limit
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Conclusion

We’ve learned about:
● Mangle
● Queuing 
● Simple queues vs Queue trees
● Policing vs Scheduling
● Hierarchial Token Bucket (The Mikrotik Sasquatch)
● Bursting with buckets
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Thank you’z

● The Brothers WISP / Greg Sowell
● Justin Miller – Why not to burst netflix traffic 
● Nick “spock” Arellano – Telling me when I’m wrong
● Rick Frey – Token bucket theory
● Janis Megis - Token bucket theory
● Tommy “C” – Help with flow chart
● My wife and kid – being supportive and help me recharge
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